数组处理程序

主要对数组本身的进行更改。并不是进行运算。

复制数组

方法 描述
copyto(dst, src[, casting, where]) 将值从一个数组复制到另一个数组,并根据需要进行广播。

改变形状

方法 描述
reshape(a, newshape[, order]) 在不更改数据的情况下为数组赋予新的形状。
ravel(a[, order]) 返回一个连续的扁平数组。
ndarray.flat 数组上的一维迭代器。
ndarray.flatten([order]) 返回折叠成一维的数组副本。

转置数组

方法 描述
moveaxis(a, source, destination) 将数组的轴移到新位置。
rollaxis(a, axis[, start]) 向后滚动指定的轴,直到其位于给定的位置。
swapaxes(a, axis1, axis2) 互换数组的两个轴。
ndarray.T 转置数组。
transpose(a[, axes]) 排列数组的尺寸。

更改维度数

方法 描述
atleast_1d(*arys) 将输入转换为至少一维的数组。
atleast_2d(*arys) 将输入视为至少具有二维的数组。
atleast_3d(*arys) 以至少三个维度的数组形式查看输入。
broadcast 产生模仿广播的对象。
broadcast_to(array, shape[, subok]) 将数组广播为新形状。
broadcast_arrays(*args, **kwargs) 互相广播任意数量的阵列。
expand_dims(a, axis) 扩展数组的形状。
squeeze(a[, axis]) 从数组形状中删除一维条目。

改变种类

方法 描述
asarray(a[, dtype, order]) 将输入转换为数组。
asanyarray(a[, dtype, order]) 将输入转换为ndarray,但通过ndarray子类。
asmatrix(data[, dtype]) 将输入解释为矩阵。
asfarray(a[, dtype]) 返回转换为浮点类型的数组。
asfortranarray(a[, dtype]) 返回以Fortran顺序排列在内存中的数组(ndim> = 1)。
ascontiguousarray(a[, dtype]) 返回内存中的连续数组(ndim> = 1)(C顺序)。
asarray_chkfinite(a[, dtype, order]) 将输入转换为数组,检查NaN或Infs。
asscalar(a) 将大小为1的数组转换为其等效的标量。
require(a[, dtype, requirements]) 返回提供的类型满足要求的ndarray。

组合数组

方法 描述
concatenate((a1, a2, …) 沿现有轴连接一系列数组。
stack(arrays[, axis, out]) 沿新轴连接一系列数组。
column_stack(tup) 将一维数组作为列堆叠到二维数组中。
dstack(tup) 沿深度方向(沿第三轴)按顺序堆叠数组。
hstack(tup) 水平(按列)顺序堆叠数组。
vstack(tup) 垂直(行)按顺序堆叠数组。
block(arrays) 从块的嵌套列表中组装一个nd数组。

拆分数组

方法 描述
split(ary, indices_or_sections[, axis]) 将数组拆分为多个子数组,作为ary的视图。
array_split(ary, indices_or_sections[, axis]) 将一个数组拆分为多个子数组。
dsplit(ary, indices_or_sections) 沿第3轴(深度)将数组拆分为多个子数组。
hsplit(ary, indices_or_sections) 水平(按列)将一个数组拆分为多个子数组。
vsplit(ary, indices_or_sections) 垂直(行)将数组拆分为多个子数组。

平铺数组

方法 描述
tile(A, reps) 通过重复A代表次数来构造一个数组。
repeat(a, repeats[, axis]) 重复数组的元素。

添加和删除元素

方法 描述
delete(arr, obj[, axis]) 返回一个新的数组,该数组具有沿删除的轴的子数组。
insert(arr, obj, values[, axis]) 沿给定轴在给定索引之前插入值。
append(arr, values[, axis]) 将值附加到数组的末尾。
resize(a, new_shape) 返回具有指定形状的新数组。
trim_zeross(filt[, trim]) 修剪一维数组或序列中的前导和/或尾随零。
unique(ar[, return_index, return_inverse, …]) 查找数组的唯一元素。

重新排列元素

方法 描述
flip(m[, axis]) 沿给定轴颠倒数组中元素的顺序。
fliplr(m) 左右翻转数组。
flipud(m) 上下翻转阵列。
reshape(a, newshape[, order]) 在不更改数据的情况下为数组赋予新的形状。
roll(a, shift[, axis]) 沿给定轴滚动数组元素。
rot90(m[, k, axes]) 在轴指定的平面中将阵列旋转90度。

数组拼接(博客)

参考文献

concatenate 提供了axis参数,用于指定拼接方向
append 默认先ravel再拼接成一维数组,也可指定axis
stack 提供了axis参数,用于生成新的维度
hstack 水平拼接,沿着行的方向,对列进行拼接
vstack 垂直拼接,沿着列的方向,对行进行拼接
dstack 沿着第三个轴(深度方向)进行拼接
column_stack 水平拼接,沿着行的方向,对列进行拼接
row_stack 垂直拼接,沿着列的方向,对行进行拼接
r_ 垂直拼接,沿着列的方向,对行进行拼接
c_ 水平拼接,沿着行的方向,对列进行拼接

0. 维度和轴

在正确理解Numpy中的数组拼接、合并操作之前,有必要认识下维度和轴的概念:
ndarray(多维数组)是Numpy处理的数据类型。多维数组的维度即为对应数据所在的空间维度,1维可以理解为直线空间,2维可以理解为平面空间,3维可以理解为立方体空间。

轴是用来对多维数组所在空间进行定义、描述的一组正交化的直线,根据数学惯例可以用i,j,ki, j ,ki,j,k来表示。

  • 在一维空间中,用一个轴就可以表示清楚,numpy中规定为axis 0,空间内的数可以理解为直线空间上的离散点 (x iii, )。
  • 在二维空间中,需要用两个轴表示,numpy中规定为axis 0和axis 1,空间内的数可以理解为平面空间上的离散点(x iii,y jjj)。
  • 在三维空间中,需要用三个轴才能表示清楚,在二维空间的基础上numpy中又增加了axis 2,空间内的数可以理解为立方体空间上的离散点(x iii,y jjj,z kkk)。

Python中可以用numpy中的ndim和shape来分别查看维度,以及在对应维度上的长度。直观上可以根据符号“[ ]”的层数来判断,有m层即为m维,最外面1层对应axis0, 依次为axis1,axis2…

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
>>> a = np.array([1,2,3])
>>> a.ndim # 一维数组
1
>>> a.shape # 在这个维度上的长度为3
(3,)

>>> b = np.array([[1,2,3], [4,5,6]])
>>> b.ndim # 二维数组
2
>>> b.shape # 在axis 0 上的长度为2, 在axis 1上的长度为3.或者可以感性的理解为2行3列
(2, 3)

>>> c = np.array([[[1,2,3], [4,5,6]]])
>>> c.ndim # 三维数组
3
>>> c.shape # 在axis 0 上的长度为1,在axis 1上的长度为2, 在axis 2上的长度为3. 或者可以感性的理解为1层2行3列
(1, 2, 3)

1. np.concatenate()

1
2
3
4
5
6
concatenate(a_tuple, axis=0, out=None)
"""
参数说明:
a_tuple:对需要合并的数组用元组的形式给出
axis: 沿指定的轴进行拼接,默认0,即第一个轴
"""

示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
>>> import numpy as np
>>> ar1 = np.array([[1,2,3], [4,5,6]])
>>> ar2 = np.array([[7,8,9], [11,12,13]])
>>> ar1
array([[1, 2, 3],
[4, 5, 6]])
>>> ar2
array([[ 7, 8, 9],
[11, 12, 13]])

>>> np.concatenate((ar1, ar2)) # 这里的第一轴(axis 0)是行方向
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9],
[11, 12, 13]])

>>> np.concatenate((ar1, ar2),axis=1) # 这里沿第二个轴,即列方向进行拼接
array([[ 1, 2, 3, 7, 8, 9],
[ 4, 5, 6, 11, 12, 13]])

>>> ar3 = np.array([[14,15,16]]) # shape为(1,3)的2维数组
>>> np.concatenate((ar1, ar3)) # 一般进行concatenate操作的array的shape需要一致,当然如果array在拼接axis方向的size不一样,也可以完成
>>> np.concatenate((ar1, ar3)) # ar3虽然在axis0方向的长度不一致,但axis1方向上一致,所以沿axis0可以拼接
array([[ 1, 2, 3],
[ 4, 5, 6],
[14, 15, 16]])
>>> np.concatenate((ar1, ar3), axis=1) # ar3和ar1在axis0方向的长度不一致,所以报错

2. np.append()

1
2
3
4
5
6
7
8
append(arr, values, axis=None)
"""
参数说明:
arr:array_like的数据
values: array_like的数据,若axis为None,则先将arr和values进行ravel扁平化,再拼接;否则values应当与arr的shape一致,或至多
在拼接axis的方向不一致
axis:进行append操作的axis的方向,默认无
"""

示例

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> np.append(ar1, ar2)  # 先ravel扁平化再拼接,所以返回值为一个1维数组
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13])

>>> np.append(ar1, ar2, axis=0) # 沿第一个轴拼接,这里为行的方向
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9],
[11, 12, 13]])

>>> np.append(ar1, ar2, axis=1) # 沿第二个轴拼接,这里为列的方向
array([[ 1, 2, 3, 7, 8, 9],
[ 4, 5, 6, 11, 12, 13]])
Python客栈送红包、纸质书

3. np.stack()

1
2
3
4
5
stack(arrays, axis=0, out=None)
"""
沿着指定的axis对arrays(每个array的shape必须一样)进行拼接,返回值的维度比原arrays的维度高1
axis:默认为0,即第一个轴,若为-1即为第二个轴
"""

示例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
>>> np.stack((ar1, ar2))   # 增加第一个维度(axis0,之后的axis向后顺延:0—>1, 1—>2)
array([[[ 1, 2, 3],
[ 4, 5, 6]],
[[ 7, 8, 9],
[11, 12, 13]]])

>>> np.stack((ar1, ar2), axis=1) # 增加第二个维度(axis1,之后的axis向后顺延, 1—>2)
array([[[ 1, 2, 3],
[ 7, 8, 9]],
[[ 4, 5, 6],
[11, 12, 13]]])

>>> np.stack((ar1, ar2), axis=2) # 增加第三个维度(axis2,和axis=-1的效果一样,原来的axis0和axis1保持不变)
array([[[ 1, 7],
[ 2, 8],
[ 3, 9]],
[[ 4, 11],
[ 5, 12],
[ 6, 13]]])

关于维度增加的一种理解方式

4. hstack、vstack和vstack

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
>>> np.hstack((ar1,ar2))  # 水平拼接,沿着行的方向,对列进行拼接
array([[ 1, 2, 3, 7, 8, 9],
[ 4, 5, 6, 11, 12, 13]])

>>> np.vstack((ar1,ar2)) # 垂直拼接,沿着列的方向,对行进行拼接
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9],
[11, 12, 13]])

>>> np.dstack((ar1,ar2)) # 对于2维数组来说,沿着第三轴(深度方向)进行拼接, 效果相当于stack(axis=-1)
array([[[ 1, 7],
[ 2, 8],
[ 3, 9]],
[[ 4, 11],
[ 5, 12],
[ 6, 13]]])

5. column_stack和row_stack

1
2
3
4
5
6
7
8
9
>>> np.column_stack((ar1,ar2))  # 水平拼接,沿着行的方向,对列进行拼接
array([[ 1, 2, 3, 7, 8, 9],
[ 4, 5, 6, 11, 12, 13]])

>>> np.row_stack((ar1,ar2)) # 垂直拼接,沿着列的方向,对行进行拼接
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9],
[11, 12, 13]])

6. np.r_ 和np.c_

常用于快速生成ndarray数据

1
2
3
4
5
6
7
8
9
>>> np.r_[ar1,ar2]   # 垂直拼接,沿着列的方向,对行进行拼接
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 7, 8, 9],
[11, 12, 13]])

>>> np.c_[ar1,ar2] # 水平拼接,沿着行的方向,对列进行拼接
array([[ 1, 2, 3, 7, 8, 9],
[ 4, 5, 6, 11, 12, 13]])

7. 总结

对于两个shape一样的二维array来说:

增加行(对行进行拼接)的方法有:

1
2
3
4
5
np.concatenate((ar1, ar2),axis=0)
np.append(ar1, ar2, axis=0)
np.vstack((ar1,ar2))
np.row_stack((ar1,ar2))
np.r_[ar1,ar2]

增加列(对列进行拼接)的方法有:

1
2
3
4
5
np.concatenate((ar1, ar2),axis=1)
np.append(ar1, ar2, axis=1)
np.hstack((ar1,ar2))
np.column_stack((ar1,ar2))
np.c_[ar1,ar2]