优化算法

scipy.optimize包提供了几种常用的优化算法。

  • 使用各种算法(例如BFGS,Nelder-Mead单纯形,牛顿共轭梯度,COBYLA或SLSQP)的无约束和约束最小化多元标量函数(minimize())
  • 全局(蛮力)优化程序(例如,anneal(),basinhopping())
  • 最小二乘最小化(leastsq())和曲线拟合(curve_fit())算法
  • 标量单变量函数最小化(minim_scalar())和根查找(newton())
  • 使用多种算法(例如,Powell,Levenberg-Marquardt混合或Newton-Krylov等大规模方法)的多元方程系统求解(root)