1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
| from numpy import sin, cos import numpy as np import matplotlib.pyplot as plt import scipy.integrate as integrate import matplotlib.animation as animation
G = 9.8 L1 = 1.0 L2 = 1.0 M1 = 1.0 M2 = 1.0
def derivs(state, t):
dydx = np.zeros_like(state) dydx[0] = state[1]
del_ = state[2] - state[0] den1 = (M1 + M2)*L1 - M2*L1*cos(del_)*cos(del_) dydx[1] = (M2*L1*state[1]*state[1]*sin(del_)*cos(del_) + M2*G*sin(state[2])*cos(del_) + M2*L2*state[3]*state[3]*sin(del_) - (M1 + M2)*G*sin(state[0]))/den1
dydx[2] = state[3]
den2 = (L2/L1)*den1 dydx[3] = (-M2*L2*state[3]*state[3]*sin(del_)*cos(del_) + (M1 + M2)*G*sin(state[0])*cos(del_) - (M1 + M2)*L1*state[1]*state[1]*sin(del_) - (M1 + M2)*G*sin(state[2]))/den2
return dydx
dt = 0.05 t = np.arange(0.0, 20, dt)
th1 = 120.0 w1 = 0.0 th2 = -10.0 w2 = 0.0
state = np.radians([th1, w1, th2, w2])
y = integrate.odeint(derivs, state, t)
x1 = L1*sin(y[:, 0]) y1 = -L1*cos(y[:, 0])
x2 = L2*sin(y[:, 2]) + x1 y2 = -L2*cos(y[:, 2]) + y1
fig = plt.figure() ax = fig.add_subplot(111, autoscale_on=False, xlim=(-2, 2), ylim=(-2, 2)) ax.set_aspect('equal') ax.grid()
line, = ax.plot([], [], 'o-', lw=2) time_template = 'time = %.1fs' time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes)
def init(): line.set_data([], []) time_text.set_text('') return line, time_text
def animate(i): thisx = [0, x1[i], x2[i]] thisy = [0, y1[i], y2[i]]
line.set_data(thisx, thisy) time_text.set_text(time_template % (i*dt)) return line, time_text
ani = animation.FuncAnimation(fig, animate, np.arange(1, len(y)), interval=25, blit=True, init_func=init)
plt.show()
|