多重图像

用单一的彩色地图、标准和颜色条制作一组图像。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from matplotlib import colors
import matplotlib.pyplot as plt
import numpy as np

np.random.seed(19680801)
Nr = 3
Nc = 2
cmap = "cool"

fig, axs = plt.subplots(Nr, Nc)
fig.suptitle('Multiple images')

images = []
for i in range(Nr):
for j in range(Nc):
# Generate data with a range that varies from one plot to the next.
data = ((1 + i + j) / 10) * np.random.rand(10, 20) * 1e-6
images.append(axs[i, j].imshow(data, cmap=cmap))
axs[i, j].label_outer()

# Find the min and max of all colors for use in setting the color scale.
vmin = min(image.get_array().min() for image in images)
vmax = max(image.get_array().max() for image in images)
norm = colors.Normalize(vmin=vmin, vmax=vmax)
for im in images:
im.set_norm(norm)

fig.colorbar(images[0], ax=axs, orientation='horizontal', fraction=.1)


# Make images respond to changes in the norm of other images (e.g. via the
# "edit axis, curves and images parameters" GUI on Qt), but be careful not to
# recurse infinitely!
def update(changed_image):
for im in images:
if (changed_image.get_cmap() != im.get_cmap()
or changed_image.get_clim() != im.get_clim()):
im.set_cmap(changed_image.get_cmap())
im.set_clim(changed_image.get_clim())


for im in images:
im.callbacksSM.connect('changed', update)

plt.show()

多重图像示例

参考

本例中显示了以下函数、方法和类的使用:

1
2
3
4
5
6
7
8
9
10
import matplotlib
matplotlib.axes.Axes.imshow
matplotlib.pyplot.imshow
matplotlib.figure.Figure.colorbar
matplotlib.pyplot.colorbar
matplotlib.colors.Normalize
matplotlib.cm.ScalarMappable.set_cmap
matplotlib.cm.ScalarMappable.set_norm
matplotlib.cm.ScalarMappable.set_clim
matplotlib.cbook.CallbackRegistry.connect

下载这个示例