1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
| import itertools from collections import OrderedDict from functools import partial
import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as mticker from cycler import cycler
def filled_hist(ax, edges, values, bottoms=None, orientation='v', **kwargs): """ Draw a histogram as a stepped patch.
Extra kwargs are passed through to `fill_between`
Parameters ---------- ax : Axes The axes to plot to
edges : array A length n+1 array giving the left edges of each bin and the right edge of the last bin.
values : array A length n array of bin counts or values
bottoms : scalar or array, optional A length n array of the bottom of the bars. If None, zero is used.
orientation : {'v', 'h'} Orientation of the histogram. 'v' (default) has the bars increasing in the positive y-direction.
Returns ------- ret : PolyCollection Artist added to the Axes """ print(orientation) if orientation not in 'hv': raise ValueError("orientation must be in {{'h', 'v'}} " "not {o}".format(o=orientation))
kwargs.setdefault('step', 'post') edges = np.asarray(edges) values = np.asarray(values) if len(edges) - 1 != len(values): raise ValueError('Must provide one more bin edge than value not: ' 'len(edges): {lb} len(values): {lv}'.format( lb=len(edges), lv=len(values)))
if bottoms is None: bottoms = np.zeros_like(values) if np.isscalar(bottoms): bottoms = np.ones_like(values) * bottoms
values = np.r_[values, values[-1]] bottoms = np.r_[bottoms, bottoms[-1]] if orientation == 'h': return ax.fill_betweenx(edges, values, bottoms, **kwargs) elif orientation == 'v': return ax.fill_between(edges, values, bottoms, **kwargs) else: raise AssertionError("you should never be here")
def stack_hist(ax, stacked_data, sty_cycle, bottoms=None, hist_func=None, labels=None, plot_func=None, plot_kwargs=None): """ ax : axes.Axes The axes to add artists too
stacked_data : array or Mapping A (N, M) shaped array. The first dimension will be iterated over to compute histograms row-wise
sty_cycle : Cycler or operable of dict Style to apply to each set
bottoms : array, optional The initial positions of the bottoms, defaults to 0
hist_func : callable, optional Must have signature `bin_vals, bin_edges = f(data)`. `bin_edges` expected to be one longer than `bin_vals`
labels : list of str, optional The label for each set.
If not given and stacked data is an array defaults to 'default set {n}'
If stacked_data is a mapping, and labels is None, default to the keys (which may come out in a random order).
If stacked_data is a mapping and labels is given then only the columns listed by be plotted.
plot_func : callable, optional Function to call to draw the histogram must have signature:
ret = plot_func(ax, edges, top, bottoms=bottoms, label=label, **kwargs)
plot_kwargs : dict, optional Any extra kwargs to pass through to the plotting function. This will be the same for all calls to the plotting function and will over-ride the values in cycle.
Returns ------- arts : dict Dictionary of artists keyed on their labels """ if hist_func is None: hist_func = np.histogram
if plot_func is None: plot_func = filled_hist
if plot_kwargs is None: plot_kwargs = {} print(plot_kwargs) try: l_keys = stacked_data.keys() label_data = True if labels is None: labels = l_keys
except AttributeError: label_data = False if labels is None: labels = itertools.repeat(None)
if label_data: loop_iter = enumerate((stacked_data[lab], lab, s) for lab, s in zip(labels, sty_cycle)) else: loop_iter = enumerate(zip(stacked_data, labels, sty_cycle))
arts = {} for j, (data, label, sty) in loop_iter: if label is None: label = 'dflt set {n}'.format(n=j) label = sty.pop('label', label) vals, edges = hist_func(data) if bottoms is None: bottoms = np.zeros_like(vals) top = bottoms + vals print(sty) sty.update(plot_kwargs) print(sty) ret = plot_func(ax, edges, top, bottoms=bottoms, label=label, **sty) bottoms = top arts[label] = ret ax.legend(fontsize=10) return arts
edges = np.linspace(-3, 3, 20, endpoint=True) hist_func = partial(np.histogram, bins=edges)
color_cycle = cycler(facecolor=plt.rcParams['axes.prop_cycle'][:4]) label_cycle = cycler(label=['set {n}'.format(n=n) for n in range(4)]) hatch_cycle = cycler(hatch=['/', '*', '+', '|'])
np.random.seed(19680801)
stack_data = np.random.randn(4, 12250) dict_data = OrderedDict(zip((c['label'] for c in label_cycle), stack_data))
|