1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
| import matplotlib from matplotlib.axes import Axes from matplotlib.patches import Circle from matplotlib.path import Path from matplotlib.ticker import NullLocator, Formatter, FixedLocator from matplotlib.transforms import Affine2D, BboxTransformTo, Transform from matplotlib.projections import register_projection import matplotlib.spines as mspines import matplotlib.axis as maxis import numpy as np
rcParams = matplotlib.rcParams
class GeoAxes(Axes): """ An abstract base class for geographic projections """ class ThetaFormatter(Formatter): """ Used to format the theta tick labels. Converts the native unit of radians into degrees and adds a degree symbol. """ def __init__(self, round_to=1.0): self._round_to = round_to
def __call__(self, x, pos=None): degrees = np.round(np.rad2deg(x) / self._round_to) * self._round_to if rcParams['text.usetex'] and not rcParams['text.latex.unicode']: return r"$%0.0f^\circ$" % degrees else: return "%0.0f\N{DEGREE SIGN}" % degrees
RESOLUTION = 75
def _init_axis(self): self.xaxis = maxis.XAxis(self) self.yaxis = maxis.YAxis(self) self._update_transScale()
def cla(self): Axes.cla(self)
self.set_longitude_grid(30) self.set_latitude_grid(15) self.set_longitude_grid_ends(75) self.xaxis.set_minor_locator(NullLocator()) self.yaxis.set_minor_locator(NullLocator()) self.xaxis.set_ticks_position('none') self.yaxis.set_ticks_position('none') self.yaxis.set_tick_params(label1On=True)
self.grid(rcParams['axes.grid'])
Axes.set_xlim(self, -np.pi, np.pi) Axes.set_ylim(self, -np.pi / 2.0, np.pi / 2.0)
def _set_lim_and_transforms(self):
self.transProjection = self._get_core_transform(self.RESOLUTION)
self.transAffine = self._get_affine_transform()
self.transAxes = BboxTransformTo(self.bbox)
self.transData = \ self.transProjection + \ self.transAffine + \ self.transAxes
self._xaxis_pretransform = \ Affine2D() \ .scale(1.0, self._longitude_cap * 2.0) \ .translate(0.0, -self._longitude_cap) self._xaxis_transform = \ self._xaxis_pretransform + \ self.transData self._xaxis_text1_transform = \ Affine2D().scale(1.0, 0.0) + \ self.transData + \ Affine2D().translate(0.0, 4.0) self._xaxis_text2_transform = \ Affine2D().scale(1.0, 0.0) + \ self.transData + \ Affine2D().translate(0.0, -4.0)
yaxis_stretch = Affine2D().scale(np.pi*2, 1).translate(-np.pi, 0) yaxis_space = Affine2D().scale(1.0, 1.1) self._yaxis_transform = \ yaxis_stretch + \ self.transData yaxis_text_base = \ yaxis_stretch + \ self.transProjection + \ (yaxis_space + self.transAffine + self.transAxes) self._yaxis_text1_transform = \ yaxis_text_base + \ Affine2D().translate(-8.0, 0.0) self._yaxis_text2_transform = \ yaxis_text_base + \ Affine2D().translate(8.0, 0.0)
def _get_affine_transform(self): transform = self._get_core_transform(1) xscale, _ = transform.transform_point((np.pi, 0)) _, yscale = transform.transform_point((0, np.pi / 2.0)) return Affine2D() \ .scale(0.5 / xscale, 0.5 / yscale) \ .translate(0.5, 0.5)
def get_xaxis_transform(self, which='grid'): """ Override this method to provide a transformation for the x-axis tick labels.
Returns a tuple of the form (transform, valign, halign) """ if which not in ['tick1', 'tick2', 'grid']: raise ValueError( "'which' must be one of 'tick1', 'tick2', or 'grid'") return self._xaxis_transform
def get_xaxis_text1_transform(self, pad): return self._xaxis_text1_transform, 'bottom', 'center'
def get_xaxis_text2_transform(self, pad): """ Override this method to provide a transformation for the secondary x-axis tick labels.
Returns a tuple of the form (transform, valign, halign) """ return self._xaxis_text2_transform, 'top', 'center'
def get_yaxis_transform(self, which='grid'): """ Override this method to provide a transformation for the y-axis grid and ticks. """ if which not in ['tick1', 'tick2', 'grid']: raise ValueError( "'which' must be one of 'tick1', 'tick2', or 'grid'") return self._yaxis_transform
def get_yaxis_text1_transform(self, pad): """ Override this method to provide a transformation for the y-axis tick labels.
Returns a tuple of the form (transform, valign, halign) """ return self._yaxis_text1_transform, 'center', 'right'
def get_yaxis_text2_transform(self, pad): """ Override this method to provide a transformation for the secondary y-axis tick labels.
Returns a tuple of the form (transform, valign, halign) """ return self._yaxis_text2_transform, 'center', 'left'
def _gen_axes_patch(self): """ Override this method to define the shape that is used for the background of the plot. It should be a subclass of Patch.
In this case, it is a Circle (that may be warped by the axes transform into an ellipse). Any data and gridlines will be clipped to this shape. """ return Circle((0.5, 0.5), 0.5)
def _gen_axes_spines(self): return {'geo': mspines.Spine.circular_spine(self, (0.5, 0.5), 0.5)}
def set_yscale(self, *args, **kwargs): if args[0] != 'linear': raise NotImplementedError
set_xscale = set_yscale
def set_xlim(self, *args, **kwargs): raise TypeError("It is not possible to change axes limits " "for geographic projections. Please consider " "using Basemap or Cartopy.")
set_ylim = set_xlim
def format_coord(self, lon, lat): """ Override this method to change how the values are displayed in the status bar.
In this case, we want them to be displayed in degrees N/S/E/W. """ lon, lat = np.rad2deg([lon, lat]) if lat >= 0.0: ns = 'N' else: ns = 'S' if lon >= 0.0: ew = 'E' else: ew = 'W' return ('%f\N{DEGREE SIGN}%s, %f\N{DEGREE SIGN}%s' % (abs(lat), ns, abs(lon), ew))
def set_longitude_grid(self, degrees): """ Set the number of degrees between each longitude grid.
This is an example method that is specific to this projection class -- it provides a more convenient interface to set the ticking than set_xticks would. """ grid = np.arange(-180 + degrees, 180, degrees) self.xaxis.set_major_locator(FixedLocator(np.deg2rad(grid))) self.xaxis.set_major_formatter(self.ThetaFormatter(degrees))
def set_latitude_grid(self, degrees): """ Set the number of degrees between each longitude grid.
This is an example method that is specific to this projection class -- it provides a more convenient interface than set_yticks would. """ grid = np.arange(-90 + degrees, 90, degrees) self.yaxis.set_major_locator(FixedLocator(np.deg2rad(grid))) self.yaxis.set_major_formatter(self.ThetaFormatter(degrees))
def set_longitude_grid_ends(self, degrees): """ Set the latitude(s) at which to stop drawing the longitude grids.
Often, in geographic projections, you wouldn't want to draw longitude gridlines near the poles. This allows the user to specify the degree at which to stop drawing longitude grids.
This is an example method that is specific to this projection class -- it provides an interface to something that has no analogy in the base Axes class. """ self._longitude_cap = np.deg2rad(degrees) self._xaxis_pretransform \ .clear() \ .scale(1.0, self._longitude_cap * 2.0) \ .translate(0.0, -self._longitude_cap)
def get_data_ratio(self): """ Return the aspect ratio of the data itself.
This method should be overridden by any Axes that have a fixed data ratio. """ return 1.0
def can_zoom(self): """ Return *True* if this axes supports the zoom box button functionality. This axes object does not support interactive zoom box. """ return False
def can_pan(self): """ Return *True* if this axes supports the pan/zoom button functionality. This axes object does not support interactive pan/zoom. """ return False
def start_pan(self, x, y, button): pass
def end_pan(self): pass
def drag_pan(self, button, key, x, y): pass
class HammerAxes(GeoAxes): """ A custom class for the Aitoff-Hammer projection, an equal-area map projection.
https://en.wikipedia.org/wiki/Hammer_projection """
name = 'custom_hammer'
class HammerTransform(Transform): """ The base Hammer transform. """ input_dims = 2 output_dims = 2 is_separable = False
def __init__(self, resolution): """ Create a new Hammer transform. Resolution is the number of steps to interpolate between each input line segment to approximate its path in curved Hammer space. """ Transform.__init__(self) self._resolution = resolution
def transform_non_affine(self, ll): longitude, latitude = ll.T
half_long = longitude / 2 cos_latitude = np.cos(latitude) sqrt2 = np.sqrt(2)
alpha = np.sqrt(1 + cos_latitude * np.cos(half_long)) x = (2 * sqrt2) * (cos_latitude * np.sin(half_long)) / alpha y = (sqrt2 * np.sin(latitude)) / alpha return np.column_stack([x, y]) transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__
def transform_path_non_affine(self, path): ipath = path.interpolated(self._resolution) return Path(self.transform(ipath.vertices), ipath.codes) transform_path_non_affine.__doc__ = \ Transform.transform_path_non_affine.__doc__
def inverted(self): return HammerAxes.InvertedHammerTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__
class InvertedHammerTransform(Transform): input_dims = 2 output_dims = 2 is_separable = False
def __init__(self, resolution): Transform.__init__(self) self._resolution = resolution
def transform_non_affine(self, xy): x, y = xy.T z = np.sqrt(1 - (x / 4) ** 2 - (y / 2) ** 2) longitude = 2 * np.arctan((z * x) / (2 * (2 * z ** 2 - 1))) latitude = np.arcsin(y*z) return np.column_stack([longitude, latitude]) transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__
def inverted(self): return HammerAxes.HammerTransform(self._resolution) inverted.__doc__ = Transform.inverted.__doc__
def __init__(self, *args, **kwargs): self._longitude_cap = np.pi / 2.0 GeoAxes.__init__(self, *args, **kwargs) self.set_aspect(0.5, adjustable='box', anchor='C') self.cla()
def _get_core_transform(self, resolution): return self.HammerTransform(resolution)
register_projection(HammerAxes)
if __name__ == '__main__': import matplotlib.pyplot as plt plt.subplot(111, projection="custom_hammer") p = plt.plot([-1, 1, 1], [-1, -1, 1], "o-") plt.grid(True)
plt.show()
|