import numpy as np import matplotlib.pyplot as plt # This import registers the 3D projection, but is otherwise unused. from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import
deflorenz(x, y, z, s=10, r=28, b=2.667): ''' Given: x, y, z: a point of interest in three dimensional space s, r, b: parameters defining the lorenz attractor Returns: x_dot, y_dot, z_dot: values of the lorenz attractor's partial derivatives at the point x, y, z ''' x_dot = s*(y - x) y_dot = r*x - y - x*z z_dot = x*y - b*z return x_dot, y_dot, z_dot
dt = 0.01 num_steps = 10000
# Need one more for the initial values xs = np.empty((num_steps + 1,)) ys = np.empty((num_steps + 1,)) zs = np.empty((num_steps + 1,))
# Step through "time", calculating the partial derivatives at the current point # and using them to estimate the next point for i inrange(num_steps): x_dot, y_dot, z_dot = lorenz(xs[i], ys[i], zs[i]) xs[i + 1] = xs[i] + (x_dot * dt) ys[i + 1] = ys[i] + (y_dot * dt) zs[i + 1] = zs[i] + (z_dot * dt)