1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
| import numpy as np
import matplotlib.pyplot as plt from matplotlib.path import Path from matplotlib.spines import Spine from matplotlib.projections.polar import PolarAxes from matplotlib.projections import register_projection
def radar_factory(num_vars, frame='circle'): """Create a radar chart with `num_vars` axes.
This function creates a RadarAxes projection and registers it.
Parameters ---------- num_vars : int Number of variables for radar chart. frame : {'circle' | 'polygon'} Shape of frame surrounding axes.
""" theta = np.linspace(0, 2*np.pi, num_vars, endpoint=False)
def draw_poly_patch(self): verts = unit_poly_verts(theta + np.pi / 2) return plt.Polygon(verts, closed=True, edgecolor='k')
def draw_circle_patch(self): return plt.Circle((0.5, 0.5), 0.5)
patch_dict = {'polygon': draw_poly_patch, 'circle': draw_circle_patch} if frame not in patch_dict: raise ValueError('unknown value for `frame`: %s' % frame)
class RadarAxes(PolarAxes):
name = 'radar' RESOLUTION = 1 draw_patch = patch_dict[frame]
def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.set_theta_zero_location('N')
def fill(self, *args, closed=True, **kwargs): """Override fill so that line is closed by default""" return super().fill(closed=closed, *args, **kwargs)
def plot(self, *args, **kwargs): """Override plot so that line is closed by default""" lines = super().plot(*args, **kwargs) for line in lines: self._close_line(line)
def _close_line(self, line): x, y = line.get_data() if x[0] != x[-1]: x = np.concatenate((x, [x[0]])) y = np.concatenate((y, [y[0]])) line.set_data(x, y)
def set_varlabels(self, labels): self.set_thetagrids(np.degrees(theta), labels)
def _gen_axes_patch(self): return self.draw_patch()
def _gen_axes_spines(self): if frame == 'circle': return super()._gen_axes_spines()
spine_type = 'circle' verts = unit_poly_verts(theta + np.pi / 2) verts.append(verts[0]) path = Path(verts)
spine = Spine(self, spine_type, path) spine.set_transform(self.transAxes) return {'polar': spine}
register_projection(RadarAxes) return theta
def unit_poly_verts(theta): """Return vertices of polygon for subplot axes.
This polygon is circumscribed by a unit circle centered at (0.5, 0.5) """ x0, y0, r = [0.5] * 3 verts = [(r*np.cos(t) + x0, r*np.sin(t) + y0) for t in theta] return verts
def example_data(): data = [ ['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO', 'O3'], ('Basecase', [ [0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00], [0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00], [0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00], [0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00], [0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00]]), ('With CO', [ [0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00], [0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00], [0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00], [0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00], [0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]]), ('With O3', [ [0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03], [0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00], [0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00], [0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95], [0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]]), ('CO & O3', [ [0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01], [0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00], [0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00], [0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88], [0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]]) ] return data
if __name__ == '__main__': N = 9 theta = radar_factory(N, frame='polygon')
data = example_data() spoke_labels = data.pop(0)
fig, axes = plt.subplots(figsize=(9, 9), nrows=2, ncols=2, subplot_kw=dict(projection='radar')) fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)
colors = ['b', 'r', 'g', 'm', 'y'] for ax, (title, case_data) in zip(axes.flatten(), data): ax.set_rgrids([0.2, 0.4, 0.6, 0.8]) ax.set_title(title, weight='bold', size='medium', position=(0.5, 1.1), horizontalalignment='center', verticalalignment='center') for d, color in zip(case_data, colors): ax.plot(theta, d, color=color) ax.fill(theta, d, facecolor=color, alpha=0.25) ax.set_varlabels(spoke_labels)
ax = axes[0, 0] labels = ('Factor 1', 'Factor 2', 'Factor 3', 'Factor 4', 'Factor 5') legend = ax.legend(labels, loc=(0.9, .95), labelspacing=0.1, fontsize='small')
fig.text(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios', horizontalalignment='center', color='black', weight='bold', size='large')
plt.show()
|