1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
| from matplotlib.axes import Axes import matplotlib.transforms as transforms import matplotlib.axis as maxis import matplotlib.spines as mspines from matplotlib.projections import register_projection
class SkewXTick(maxis.XTick): def update_position(self, loc): self._loc = loc super().update_position(loc)
def _has_default_loc(self): return self.get_loc() is None
def _need_lower(self): return (self._has_default_loc() or transforms.interval_contains(self.axes.lower_xlim, self.get_loc()))
def _need_upper(self): return (self._has_default_loc() or transforms.interval_contains(self.axes.upper_xlim, self.get_loc()))
@property def gridOn(self): return (self._gridOn and (self._has_default_loc() or transforms.interval_contains(self.get_view_interval(), self.get_loc())))
@gridOn.setter def gridOn(self, value): self._gridOn = value
@property def tick1On(self): return self._tick1On and self._need_lower()
@tick1On.setter def tick1On(self, value): self._tick1On = value
@property def label1On(self): return self._label1On and self._need_lower()
@label1On.setter def label1On(self, value): self._label1On = value
@property def tick2On(self): return self._tick2On and self._need_upper()
@tick2On.setter def tick2On(self, value): self._tick2On = value
@property def label2On(self): return self._label2On and self._need_upper()
@label2On.setter def label2On(self, value): self._label2On = value
def get_view_interval(self): return self.axes.xaxis.get_view_interval()
class SkewXAxis(maxis.XAxis): def _get_tick(self, major): return SkewXTick(self.axes, None, '', major=major)
def get_view_interval(self): return self.axes.upper_xlim[0], self.axes.lower_xlim[1]
class SkewSpine(mspines.Spine): def _adjust_location(self): pts = self._path.vertices if self.spine_type == 'top': pts[:, 0] = self.axes.upper_xlim else: pts[:, 0] = self.axes.lower_xlim
class SkewXAxes(Axes): name = 'skewx'
def _init_axis(self): self.xaxis = SkewXAxis(self) self.spines['top'].register_axis(self.xaxis) self.spines['bottom'].register_axis(self.xaxis) self.yaxis = maxis.YAxis(self) self.spines['left'].register_axis(self.yaxis) self.spines['right'].register_axis(self.yaxis)
def _gen_axes_spines(self): spines = {'top': SkewSpine.linear_spine(self, 'top'), 'bottom': mspines.Spine.linear_spine(self, 'bottom'), 'left': mspines.Spine.linear_spine(self, 'left'), 'right': mspines.Spine.linear_spine(self, 'right')} return spines
def _set_lim_and_transforms(self): """ This is called once when the plot is created to set up all the transforms for the data, text and grids. """ rot = 30
Axes._set_lim_and_transforms(self)
self.transDataToAxes = self.transScale + \ self.transLimits + transforms.Affine2D().skew_deg(rot, 0)
self.transData = self.transDataToAxes + self.transAxes
self._xaxis_transform = (transforms.blended_transform_factory( self.transScale + self.transLimits, transforms.IdentityTransform()) + transforms.Affine2D().skew_deg(rot, 0)) + self.transAxes
@property def lower_xlim(self): return self.axes.viewLim.intervalx
@property def upper_xlim(self): pts = [[0., 1.], [1., 1.]] return self.transDataToAxes.inverted().transform(pts)[:, 0]
register_projection(SkewXAxes)
if __name__ == '__main__': from io import StringIO from matplotlib.ticker import (MultipleLocator, NullFormatter, ScalarFormatter) import matplotlib.pyplot as plt import numpy as np
data_txt = ''' 978.0 345 7.8 0.8 61 4.16 325 14 282.7 294.6 283.4 971.0 404 7.2 0.2 61 4.01 327 17 282.7 294.2 283.4 946.7 610 5.2 -1.8 61 3.56 335 26 282.8 293.0 283.4 944.0 634 5.0 -2.0 61 3.51 336 27 282.8 292.9 283.4 925.0 798 3.4 -2.6 65 3.43 340 32 282.8 292.7 283.4 911.8 914 2.4 -2.7 69 3.46 345 37 282.9 292.9 283.5 906.0 966 2.0 -2.7 71 3.47 348 39 283.0 293.0 283.6 877.9 1219 0.4 -3.2 77 3.46 0 48 283.9 293.9 284.5 850.0 1478 -1.3 -3.7 84 3.44 0 47 284.8 294.8 285.4 841.0 1563 -1.9 -3.8 87 3.45 358 45 285.0 295.0 285.6 823.0 1736 1.4 -0.7 86 4.44 353 42 290.3 303.3 291.0 813.6 1829 4.5 1.2 80 5.17 350 40 294.5 309.8 295.4 809.0 1875 6.0 2.2 77 5.57 347 39 296.6 313.2 297.6 798.0 1988 7.4 -0.6 57 4.61 340 35 299.2 313.3 300.1 791.0 2061 7.6 -1.4 53 4.39 335 33 300.2 313.6 301.0 783.9 2134 7.0 -1.7 54 4.32 330 31 300.4 313.6 301.2 755.1 2438 4.8 -3.1 57 4.06 300 24 301.2 313.7 301.9 727.3 2743 2.5 -4.4 60 3.81 285 29 301.9 313.8 302.6 700.5 3048 0.2 -5.8 64 3.57 275 31 302.7 313.8 303.3 700.0 3054 0.2 -5.8 64 3.56 280 31 302.7 313.8 303.3 698.0 3077 0.0 -6.0 64 3.52 280 31 302.7 313.7 303.4 687.0 3204 -0.1 -7.1 59 3.28 281 31 304.0 314.3 304.6 648.9 3658 -3.2 -10.9 55 2.59 285 30 305.5 313.8 305.9 631.0 3881 -4.7 -12.7 54 2.29 289 33 306.2 313.6 306.6 600.7 4267 -6.4 -16.7 44 1.73 295 39 308.6 314.3 308.9 592.0 4381 -6.9 -17.9 41 1.59 297 41 309.3 314.6 309.6 577.6 4572 -8.1 -19.6 39 1.41 300 44 310.1 314.9 310.3 555.3 4877 -10.0 -22.3 36 1.16 295 39 311.3 315.3 311.5 536.0 5151 -11.7 -24.7 33 0.97 304 39 312.4 315.8 312.6 533.8 5182 -11.9 -25.0 33 0.95 305 39 312.5 315.8 312.7 500.0 5680 -15.9 -29.9 29 0.64 290 44 313.6 315.9 313.7 472.3 6096 -19.7 -33.4 28 0.49 285 46 314.1 315.8 314.1 453.0 6401 -22.4 -36.0 28 0.39 300 50 314.4 315.8 314.4 400.0 7310 -30.7 -43.7 27 0.20 285 44 315.0 315.8 315.0 399.7 7315 -30.8 -43.8 27 0.20 285 44 315.0 315.8 315.0 387.0 7543 -33.1 -46.1 26 0.16 281 47 314.9 315.5 314.9 382.7 7620 -33.8 -46.8 26 0.15 280 48 315.0 315.6 315.0 342.0 8398 -40.5 -53.5 23 0.08 293 52 316.1 316.4 316.1 320.4 8839 -43.7 -56.7 22 0.06 300 54 317.6 317.8 317.6 318.0 8890 -44.1 -57.1 22 0.05 301 55 317.8 318.0 317.8 310.0 9060 -44.7 -58.7 19 0.04 304 61 319.2 319.4 319.2 306.1 9144 -43.9 -57.9 20 0.05 305 63 321.5 321.7 321.5 305.0 9169 -43.7 -57.7 20 0.05 303 63 322.1 322.4 322.1 300.0 9280 -43.5 -57.5 20 0.05 295 64 323.9 324.2 323.9 292.0 9462 -43.7 -58.7 17 0.05 293 67 326.2 326.4 326.2 276.0 9838 -47.1 -62.1 16 0.03 290 74 326.6 326.7 326.6 264.0 10132 -47.5 -62.5 16 0.03 288 79 330.1 330.3 330.1 251.0 10464 -49.7 -64.7 16 0.03 285 85 331.7 331.8 331.7 250.0 10490 -49.7 -64.7 16 0.03 285 85 332.1 332.2 332.1 247.0 10569 -48.7 -63.7 16 0.03 283 88 334.7 334.8 334.7 244.0 10649 -48.9 -63.9 16 0.03 280 91 335.6 335.7 335.6 243.3 10668 -48.9 -63.9 16 0.03 280 91 335.8 335.9 335.8 220.0 11327 -50.3 -65.3 15 0.03 280 85 343.5 343.6 343.5 212.0 11569 -50.5 -65.5 15 0.03 280 83 346.8 346.9 346.8 210.0 11631 -49.7 -64.7 16 0.03 280 83 349.0 349.1 349.0 200.0 11950 -49.9 -64.9 15 0.03 280 80 353.6 353.7 353.6 194.0 12149 -49.9 -64.9 15 0.03 279 78 356.7 356.8 356.7 183.0 12529 -51.3 -66.3 15 0.03 278 75 360.4 360.5 360.4 164.0 13233 -55.3 -68.3 18 0.02 277 69 365.2 365.3 365.2 152.0 13716 -56.5 -69.5 18 0.02 275 65 371.1 371.2 371.1 150.0 13800 -57.1 -70.1 18 0.02 275 64 371.5 371.6 371.5 136.0 14414 -60.5 -72.5 19 0.02 268 54 376.0 376.1 376.0 132.0 14600 -60.1 -72.1 19 0.02 265 51 380.0 380.1 380.0 131.4 14630 -60.2 -72.2 19 0.02 265 51 380.3 380.4 380.3 128.0 14792 -60.9 -72.9 19 0.02 266 50 381.9 382.0 381.9 125.0 14939 -60.1 -72.1 19 0.02 268 49 385.9 386.0 385.9 119.0 15240 -62.2 -73.8 20 0.01 270 48 387.4 387.5 387.4 112.0 15616 -64.9 -75.9 21 0.01 265 53 389.3 389.3 389.3 108.0 15838 -64.1 -75.1 21 0.01 265 58 394.8 394.9 394.8 107.8 15850 -64.1 -75.1 21 0.01 265 58 395.0 395.1 395.0 105.0 16010 -64.7 -75.7 21 0.01 272 50 396.9 396.9 396.9 103.0 16128 -62.9 -73.9 21 0.02 277 45 402.5 402.6 402.5 100.0 16310 -62.5 -73.5 21 0.02 285 36 406.7 406.8 406.7 '''
sound_data = StringIO(data_txt) p, h, T, Td = np.loadtxt(sound_data, usecols=range(0, 4), unpack=True)
fig = plt.figure(figsize=(6.5875, 6.2125)) ax = fig.add_subplot(111, projection='skewx')
plt.grid(True)
ax.semilogy(T, p, color='C3') ax.semilogy(Td, p, color='C2')
l = ax.axvline(0, color='C0')
ax.yaxis.set_major_formatter(ScalarFormatter()) ax.yaxis.set_minor_formatter(NullFormatter()) ax.set_yticks(np.linspace(100, 1000, 10)) ax.set_ylim(1050, 100)
ax.xaxis.set_major_locator(MultipleLocator(10)) ax.set_xlim(-50, 50)
plt.show()
|