1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
| import matplotlib.pyplot as plt import subprocess import sys import re
mathtext_titles = { 0: "Header demo", 1: "Subscripts and superscripts", 2: "Fractions, binomials and stacked numbers", 3: "Radicals", 4: "Fonts", 5: "Accents", 6: "Greek, Hebrew", 7: "Delimiters, functions and Symbols"} n_lines = len(mathtext_titles)
mathext_demos = { 0: r"$W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = " r"U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8 \pi 2} " r"\int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 \left[\frac{ " r"U^{2\beta}_{\delta_1 \rho_1} - \alpha^\prime_2U^{1\beta}_" r"{\rho_1 \sigma_2} }{U^{0\beta}_{\rho_1 \sigma_2}}\right]$",
1: r"$\alpha_i > \beta_i,\ " r"\alpha_{i+1}^j = {\rm sin}(2\pi f_j t_i) e^{-5 t_i/\tau},\ " r"\ldots$",
2: r"$\frac{3}{4},\ \binom{3}{4},\ \stackrel{3}{4},\ " r"\left(\frac{5 - \frac{1}{x}}{4}\right),\ \ldots$",
3: r"$\sqrt{2},\ \sqrt[3]{x},\ \ldots$",
4: r"$\mathrm{Roman}\ , \ \mathit{Italic}\ , \ \mathtt{Typewriter} \ " r"\mathrm{or}\ \mathcal{CALLIGRAPHY}$",
5: r"$\acute a,\ \bar a,\ \breve a,\ \dot a,\ \ddot a, \ \grave a, \ " r"\hat a,\ \tilde a,\ \vec a,\ \widehat{xyz},\ \widetilde{xyz},\ " r"\ldots$",
6: r"$\alpha,\ \beta,\ \chi,\ \delta,\ \lambda,\ \mu,\ " r"\Delta,\ \Gamma,\ \Omega,\ \Phi,\ \Pi,\ \Upsilon,\ \nabla,\ " r"\aleph,\ \beth,\ \daleth,\ \gimel,\ \ldots$",
7: r"$\coprod,\ \int,\ \oint,\ \prod,\ \sum,\ " r"\log,\ \sin,\ \approx,\ \oplus,\ \star,\ \varpropto,\ " r"\infty,\ \partial,\ \Re,\ \leftrightsquigarrow, \ \ldots$"}
def doall(): mpl_blue_rvb = (191. / 255., 209. / 256., 212. / 255.) mpl_orange_rvb = (202. / 255., 121. / 256., 0. / 255.) mpl_grey_rvb = (51. / 255., 51. / 255., 51. / 255.)
plt.figure(figsize=(6, 7)) plt.axes([0.01, 0.01, 0.98, 0.90], facecolor="white", frameon=True) plt.gca().set_xlim(0., 1.) plt.gca().set_ylim(0., 1.) plt.gca().set_title("Matplotlib's math rendering engine", color=mpl_grey_rvb, fontsize=14, weight='bold') plt.gca().set_xticklabels("", visible=False) plt.gca().set_yticklabels("", visible=False)
line_axesfrac = (1. / (n_lines))
full_demo = mathext_demos[0] plt.annotate(full_demo, xy=(0.5, 1. - 0.59 * line_axesfrac), xycoords='data', color=mpl_orange_rvb, ha='center', fontsize=20)
for i_line in range(1, n_lines): baseline = 1 - (i_line) * line_axesfrac baseline_next = baseline - line_axesfrac title = mathtext_titles[i_line] + ":" fill_color = ['white', mpl_blue_rvb][i_line % 2] plt.fill_between([0., 1.], [baseline, baseline], [baseline_next, baseline_next], color=fill_color, alpha=0.5) plt.annotate(title, xy=(0.07, baseline - 0.3 * line_axesfrac), xycoords='data', color=mpl_grey_rvb, weight='bold') demo = mathext_demos[i_line] plt.annotate(demo, xy=(0.05, baseline - 0.75 * line_axesfrac), xycoords='data', color=mpl_grey_rvb, fontsize=16)
for i in range(n_lines): s = mathext_demos[i] print(i, s) plt.show()
if '--latex' in sys.argv: fd = open("mathtext_examples.ltx", "w") fd.write("\\documentclass{article}\n") fd.write("\\usepackage{amsmath, amssymb}\n") fd.write("\\begin{document}\n") fd.write("\\begin{enumerate}\n")
for i in range(n_lines): s = mathext_demos[i] s = re.sub(r"(?<!\\)\$", "$$", s) fd.write("\\item %s\n" % s)
fd.write("\\end{enumerate}\n") fd.write("\\end{document}\n") fd.close()
subprocess.call(["pdflatex", "mathtext_examples.ltx"]) else: doall()
|