SVG直方图

演示如何创建交互式直方图,通过单击图例标记隐藏或显示条形图。

交互性以ecmascript(javascript)编码,并在后处理步骤中插入SVG代码中。 要渲染图像,请在Web浏览器中打开它。 大多数Linux Web浏览器和OSX用户都支持SVG。 Windows IE9支持SVG,但早期版本不支持。

注意

matplotlib后端允许我们为每个对象分配id。 这是用于描述在python中创建的matplotlib对象的机制以及在第二步中解析的相应SVG构造。 虽然灵活,但它们很难用于大量物体的收集。 可以使用两种机制来简化事情:

  • 系统地将对象分组为SVG <g>标签,
  • 根据每个SVG对象的来源为每个SVG对象分配类。

例如,不是修改每个单独栏的属性,而是可以将列分组到PatchCollection中,或者将列分配给class =“hist _ ##”属性。

CSS也可以广泛用于替换整个SVG生成中的重复标记。

作者:david.huard@gmail.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import numpy as np
import matplotlib.pyplot as plt
import xml.etree.ElementTree as ET
from io import BytesIO
import json


plt.rcParams['svg.fonttype'] = 'none'

# Apparently, this `register_namespace` method works only with
# python 2.7 and up and is necessary to avoid garbling the XML name
# space with ns0.
ET.register_namespace("", "http://www.w3.org/2000/svg")

# Fixing random state for reproducibility
np.random.seed(19680801)

# --- Create histogram, legend and title ---
plt.figure()
r = np.random.randn(100)
r1 = r + 1
labels = ['Rabbits', 'Frogs']
H = plt.hist([r, r1], label=labels)
containers = H[-1]
leg = plt.legend(frameon=False)
plt.title("From a web browser, click on the legend\n"
"marker to toggle the corresponding histogram.")


# --- Add ids to the svg objects we'll modify

hist_patches = {}
for ic, c in enumerate(containers):
hist_patches['hist_%d' % ic] = []
for il, element in enumerate(c):
element.set_gid('hist_%d_patch_%d' % (ic, il))
hist_patches['hist_%d' % ic].append('hist_%d_patch_%d' % (ic, il))

# Set ids for the legend patches
for i, t in enumerate(leg.get_patches()):
t.set_gid('leg_patch_%d' % i)

# Set ids for the text patches
for i, t in enumerate(leg.get_texts()):
t.set_gid('leg_text_%d' % i)

# Save SVG in a fake file object.
f = BytesIO()
plt.savefig(f, format="svg")

# Create XML tree from the SVG file.
tree, xmlid = ET.XMLID(f.getvalue())


# --- Add interactivity ---

# Add attributes to the patch objects.
for i, t in enumerate(leg.get_patches()):
el = xmlid['leg_patch_%d' % i]
el.set('cursor', 'pointer')
el.set('onclick', "toggle_hist(this)")

# Add attributes to the text objects.
for i, t in enumerate(leg.get_texts()):
el = xmlid['leg_text_%d' % i]
el.set('cursor', 'pointer')
el.set('onclick', "toggle_hist(this)")

# Create script defining the function `toggle_hist`.
# We create a global variable `container` that stores the patches id
# belonging to each histogram. Then a function "toggle_element" sets the
# visibility attribute of all patches of each histogram and the opacity
# of the marker itself.

script = """
<script type="text/ecmascript">
<![CDATA[
var container = %s

function toggle(oid, attribute, values) {
/* Toggle the style attribute of an object between two values.

Parameters
----------
oid : str
Object identifier.
attribute : str
Name of style attribute.
values : [on state, off state]
The two values that are switched between.
*/
var obj = document.getElementById(oid);
var a = obj.style[attribute];

a = (a == values[0] || a == "") ? values[1] : values[0];
obj.style[attribute] = a;
}

function toggle_hist(obj) {

var num = obj.id.slice(-1);

toggle('leg_patch_' + num, 'opacity', [1, 0.3]);
toggle('leg_text_' + num, 'opacity', [1, 0.5]);

var names = container['hist_'+num]

for (var i=0; i < names.length; i++) {
toggle(names[i], 'opacity', [1,0])
};
}
]]>
</script>
""" % json.dumps(hist_patches)

# Add a transition effect
css = tree.getchildren()[0][0]
css.text = css.text + "g {-webkit-transition:opacity 0.4s ease-out;" + \
"-moz-transition:opacity 0.4s ease-out;}"

# Insert the script and save to file.
tree.insert(0, ET.XML(script))

ET.ElementTree(tree).write("svg_histogram.svg")

下载这个示例