烹饪指南

本节列出了一些短小精悍的 Pandas 实例与链接。

我们希望 Pandas 用户能积极踊跃地为本文档添加更多内容。为本节添加实用示例的链接或代码,是 Pandas 用户提交第一个 Pull Request 最好的选择。

本节列出了简单、精练、易上手的实例代码,以及 Stack Overflow 或 GitHub 上的链接,这些链接包含实例代码的更多详情。

pdnp 是 Pandas 与 Numpy 的缩写。为了让新手易于理解,其它模块是显式导入的。

下列实例均为 Python 3 代码,简单修改即可用于 Python 早期版本。

惯用语

以下是 Pandas 的惯用语

对一列数据执行 if-then / if-then-else 操作,把计算结果赋值给一列或多列:

1
2
3
4
5
6
7
8
9
10
11
12
In [1]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
...: 'BBB': [10, 20, 30, 40],
...: 'CCC': [100, 50, -30, -50]})
...:

In [2]: df
Out[2]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

if-then…

在一列上执行 if-then 操作:

1
2
3
4
5
6
7
8
9
In [3]: df.loc[df.AAA >= 5, 'BBB'] = -1

In [4]: df
Out[4]:
AAA BBB CCC
0 4 10 100
1 5 -1 50
2 6 -1 -30
3 7 -1 -50

在两列上执行 if-then 操作:

1
2
3
4
5
6
7
8
9
In [5]: df.loc[df.AAA >= 5, ['BBB', 'CCC']] = 555

In [6]: df
Out[6]:
AAA BBB CCC
0 4 10 100
1 5 555 555
2 6 555 555
3 7 555 555

再添加一行代码,执行 -else 操作:

1
2
3
4
5
6
7
8
9
In [7]: df.loc[df.AAA < 5, ['BBB', 'CCC']] = 2000

In [8]: df
Out[8]:
AAA BBB CCC
0 4 2000 2000
1 5 555 555
2 6 555 555
3 7 555 555

或用 Pandas 的 where 设置掩码(mask):

1
2
3
4
5
6
7
8
9
10
11
12
In [9]: df_mask = pd.DataFrame({'AAA': [True] * 4,
...: 'BBB': [False] * 4,
...: 'CCC': [True, False] * 2})
...:

In [10]: df.where(df_mask, -1000)
Out[10]:
AAA BBB CCC
0 4 -1000 2000
1 5 -1000 -1000
2 6 -1000 555
3 7 -1000 -1000

用 NumPy where() 函数实现 if-then-else

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
In [11]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:

In [12]: df
Out[12]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [13]: df['logic'] = np.where(df['AAA'] > 5, 'high', 'low')

In [14]: df
Out[14]:
AAA BBB CCC logic
0 4 10 100 low
1 5 20 50 low
2 6 30 -30 high
3 7 40 -50 high

切割

用布尔条件切割 DataFrame

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
In [15]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:

In [16]: df
Out[16]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [17]: df[df.AAA <= 5]
Out[17]:
AAA BBB CCC
0 4 10 100
1 5 20 50

In [18]: df[df.AAA > 5]
Out[18]:
AAA BBB CCC
2 6 30 -30
3 7 40 -50

设置条件

多列条件选择

1
2
3
4
5
6
7
8
9
10
11
12
In [19]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:

In [20]: df
Out[20]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

和(&),不赋值,直接返回 Series:

1
2
3
4
5
In [21]: df.loc[(df['BBB'] < 25) & (df['CCC'] >= -40), 'AAA']
Out[21]:
0 4
1 5
Name: AAA, dtype: int64

或(|),不赋值,直接返回 Series:

1
2
3
4
5
6
7
In [22]: df.loc[(df['BBB'] > 25) | (df['CCC'] >= -40), 'AAA']
Out[22]:
0 4
1 5
2 6
3 7
Name: AAA, dtype: int64

或(|),赋值,修改 DataFrame:

1
2
3
4
5
6
7
8
9
In [23]: df.loc[(df['BBB'] > 25) | (df['CCC'] >= 75), 'AAA'] = 0.1

In [24]: df
Out[24]:
AAA BBB CCC
0 0.1 10 100
1 5.0 20 50
2 0.1 30 -30
3 0.1 40 -50

用 argsort 选择最接近指定值的行

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
In [25]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:

In [26]: df
Out[26]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [27]: aValue = 43.0

In [28]: df.loc[(df.CCC - aValue).abs().argsort()]
Out[28]:
AAA BBB CCC
1 5 20 50
0 4 10 100
2 6 30 -30
3 7 40 -50

用二进制运算符动态减少条件列表

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
In [29]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:

In [30]: df
Out[30]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [31]: Crit1 = df.AAA <= 5.5

In [32]: Crit2 = df.BBB == 10.0

In [33]: Crit3 = df.CCC > -40.0

硬编码方式为:

1
In [34]: AllCrit = Crit1 & Crit2 & Crit3

生成动态条件列表:

1
2
3
4
5
6
7
8
9
10
In [35]: import functools

In [36]: CritList = [Crit1, Crit2, Crit3]

In [37]: AllCrit = functools.reduce(lambda x, y: x & y, CritList)

In [38]: df[AllCrit]
Out[38]:
AAA BBB CCC
0 4 10 100

选择

DataFrames

更多信息,请参阅索引文档。

行标签与值作为条件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
In [39]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:

In [40]: df
Out[40]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [41]: df[(df.AAA <= 6) & (df.index.isin([0, 2, 4]))]
Out[41]:
AAA BBB CCC
0 4 10 100
2 6 30 -30

标签切片用 loc,位置切片用 iloc

1
2
3
4
5
In [42]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]},
....: index=['foo', 'bar', 'boo', 'kar'])
....:

前 2 个是显式切片方法,第 3 个是通用方法:

  1. 位置切片,Python 切片风格,不包括结尾数据;
  2. 标签切片,非 Python 切片风格,包括结尾数据;
  3. 通用切片,支持两种切片风格,取决于切片用的是标签还是位置。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
In [43]: df.loc['bar':'kar']  # Label
Out[43]:
AAA BBB CCC
bar 5 20 50
boo 6 30 -30
kar 7 40 -50

# Generic
In [44]: df.iloc[0:3]
Out[44]:
AAA BBB CCC
foo 4 10 100
bar 5 20 50
boo 6 30 -30

In [45]: df.loc['bar':'kar']
Out[45]:
AAA BBB CCC
bar 5 20 50
boo 6 30 -30
kar 7 40 -50

包含整数,且不从 0 开始的索引,或不是逐步递增的索引会引发歧义。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
In [46]: data = {'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]}
....:

In [47]: df2 = pd.DataFrame(data=data, index=[1, 2, 3, 4]) # Note index starts at 1.

In [48]: df2.iloc[1:3] # Position-oriented
Out[48]:
AAA BBB CCC
2 5 20 50
3 6 30 -30

In [49]: df2.loc[1:3] # Label-oriented
Out[49]:
AAA BBB CCC
1 4 10 100
2 5 20 50
3 6 30 -30

用逆运算符 (~)提取掩码的反向内容

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
In [50]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:

In [51]: df
Out[51]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50

In [52]: df[~((df.AAA <= 6) & (df.index.isin([0, 2, 4])))]
Out[52]:
AAA BBB CCC
1 5 20 50
3 7 40 -50

生成新列

用 applymap 高效动态生成新列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
In [53]: df = pd.DataFrame({'AAA': [1, 2, 1, 3],
....: 'BBB': [1, 1, 2, 2],
....: 'CCC': [2, 1, 3, 1]})
....:

In [54]: df
Out[54]:
AAA BBB CCC
0 1 1 2
1 2 1 1
2 1 2 3
3 3 2 1

In [55]: source_cols = df.columns # Or some subset would work too

In [56]: new_cols = [str(x) + "_cat" for x in source_cols]

In [57]: categories = {1: 'Alpha', 2: 'Beta', 3: 'Charlie'}

In [58]: df[new_cols] = df[source_cols].applymap(categories.get)

In [59]: df
Out[59]:
AAA BBB CCC AAA_cat BBB_cat CCC_cat
0 1 1 2 Alpha Alpha Beta
1 2 1 1 Beta Alpha Alpha
2 1 2 3 Alpha Beta Charlie
3 3 2 1 Charlie Beta Alpha

分组时用 min()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
In [60]: df = pd.DataFrame({'AAA': [1, 1, 1, 2, 2, 2, 3, 3],
....: 'BBB': [2, 1, 3, 4, 5, 1, 2, 3]})
....:

In [61]: df
Out[61]:
AAA BBB
0 1 2
1 1 1
2 1 3
3 2 4
4 2 5
5 2 1
6 3 2
7 3 3

方法1:用 idxmin() 提取每组最小值的索引

1
2
3
4
5
6
In [62]: df.loc[df.groupby("AAA")["BBB"].idxmin()]
Out[62]:
AAA BBB
1 1 1
5 2 1
6 3 2

方法 2:先排序,再提取每组的第一个值

1
2
3
4
5
6
In [63]: df.sort_values(by="BBB").groupby("AAA", as_index=False).first()
Out[63]:
AAA BBB
0 1 1
1 2 1
2 3 2

注意,提取的数据一样,但索引不一样。

多层索引

更多信息,请参阅多层索引文档。

用带标签的字典创建多层索引

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
In [64]: df = pd.DataFrame({'row': [0, 1, 2],
....: 'One_X': [1.1, 1.1, 1.1],
....: 'One_Y': [1.2, 1.2, 1.2],
....: 'Two_X': [1.11, 1.11, 1.11],
....: 'Two_Y': [1.22, 1.22, 1.22]})
....:

In [65]: df
Out[65]:
row One_X One_Y Two_X Two_Y
0 0 1.1 1.2 1.11 1.22
1 1 1.1 1.2 1.11 1.22
2 2 1.1 1.2 1.11 1.22

# 设置索引标签
In [66]: df = df.set_index('row')

In [67]: df
Out[67]:
One_X One_Y Two_X Two_Y
row
0 1.1 1.2 1.11 1.22
1 1.1 1.2 1.11 1.22
2 1.1 1.2 1.11 1.22

# 多层索引的列
In [68]: df.columns = pd.MultiIndex.from_tuples([tuple(c.split('_'))
....: for c in df.columns])
....:

In [69]: df
Out[69]:
One Two
X Y X Y
row
0 1.1 1.2 1.11 1.22
1 1.1 1.2 1.11 1.22
2 1.1 1.2 1.11 1.22

# 先 stack,然后 Reset 索引

In [70]: df = df.stack(0).reset_index(1)

In [71]: df
Out[71]:
level_1 X Y
row
0 One 1.10 1.20
0 Two 1.11 1.22
1 One 1.10 1.20
1 Two 1.11 1.22
2 One 1.10 1.20
2 Two 1.11 1.22

# 修整标签,注意自动添加了标签 `level_1`
In [72]: df.columns = ['Sample', 'All_X', 'All_Y']

In [73]: df
Out[73]:
Sample All_X All_Y
row
0 One 1.10 1.20
0 Two 1.11 1.22
1 One 1.10 1.20
1 Two 1.11 1.22
2 One 1.10 1.20
2 Two 1.11 1.22

运算

多层索引运算要用广播机制

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
In [74]: cols = pd.MultiIndex.from_tuples([(x, y) for x in ['A', 'B', 'C']
....: for y in ['O', 'I']])
....:

In [75]: df = pd.DataFrame(np.random.randn(2, 6), index=['n', 'm'], columns=cols)

In [76]: df
Out[76]:
A B C
O I O I O I
n 0.469112 -0.282863 -1.509059 -1.135632 1.212112 -0.173215
m 0.119209 -1.044236 -0.861849 -2.104569 -0.494929 1.071804

In [77]: df = df.div(df['C'], level=1)

In [78]: df
Out[78]:
A B C
O I O I O I
n 0.387021 1.633022 -1.244983 6.556214 1.0 1.0
m -0.240860 -0.974279 1.741358 -1.963577 1.0 1.0

切片

用 xs 切片多层索引

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
In [79]: coords = [('AA', 'one'), ('AA', 'six'), ('BB', 'one'), ('BB', 'two'),
....: ('BB', 'six')]
....:

In [80]: index = pd.MultiIndex.from_tuples(coords)

In [81]: df = pd.DataFrame([11, 22, 33, 44, 55], index, ['MyData'])

In [82]: df
Out[82]:
MyData
AA one 11
six 22
BB one 33
two 44
six 55

提取第一层与索引第一个轴的交叉数据:

1
2
3
4
5
6
7
# 注意:level 与 axis 是可选项,默认为 0
In [83]: df.xs('BB', level=0, axis=0)
Out[83]:
MyData
one 33
two 44
six 55

……现在是第 1 个轴的第 2 层

1
2
3
4
5
In [84]: df.xs('six', level=1, axis=0)
Out[84]:
MyData
AA 22
BB 55

用 xs 切片多层索引,方法 #2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
In [85]: import itertools

In [86]: index = list(itertools.product(['Ada', 'Quinn', 'Violet'],
....: ['Comp', 'Math', 'Sci']))
....:

In [87]: headr = list(itertools.product(['Exams', 'Labs'], ['I', 'II']))

In [88]: indx = pd.MultiIndex.from_tuples(index, names=['Student', 'Course'])

In [89]: cols = pd.MultiIndex.from_tuples(headr) # Notice these are un-named

In [90]: data = [[70 + x + y + (x * y) % 3 for x in range(4)] for y in range(9)]

In [91]: df = pd.DataFrame(data, indx, cols)

In [92]: df
Out[92]:
Exams Labs
I II I II
Student Course
Ada Comp 70 71 72 73
Math 71 73 75 74
Sci 72 75 75 75
Quinn Comp 73 74 75 76
Math 74 76 78 77
Sci 75 78 78 78
Violet Comp 76 77 78 79
Math 77 79 81 80
Sci 78 81 81 81

In [93]: All = slice(None)

In [94]: df.loc['Violet']
Out[94]:
Exams Labs
I II I II
Course
Comp 76 77 78 79
Math 77 79 81 80
Sci 78 81 81 81

In [95]: df.loc[(All, 'Math'), All]
Out[95]:
Exams Labs
I II I II
Student Course
Ada Math 71 73 75 74
Quinn Math 74 76 78 77
Violet Math 77 79 81 80

In [96]: df.loc[(slice('Ada', 'Quinn'), 'Math'), All]
Out[96]:
Exams Labs
I II I II
Student Course
Ada Math 71 73 75 74
Quinn Math 74 76 78 77

In [97]: df.loc[(All, 'Math'), ('Exams')]
Out[97]:
I II
Student Course
Ada Math 71 73
Quinn Math 74 76
Violet Math 77 79

In [98]: df.loc[(All, 'Math'), (All, 'II')]
Out[98]:
Exams Labs
II II
Student Course
Ada Math 73 74
Quinn Math 76 77
Violet Math 79 80

用 xs 设置多层索引比例

排序

用多层索引按指定列或列序列表排序x

1
2
3
4
5
6
7
8
9
10
11
12
13
14
In [99]: df.sort_values(by=('Labs', 'II'), ascending=False)
Out[99]:
Exams Labs
I II I II
Student Course
Violet Sci 78 81 81 81
Math 77 79 81 80
Comp 76 77 78 79
Quinn Sci 75 78 78 78
Math 74 76 78 77
Comp 73 74 75 76
Ada Sci 72 75 75 75
Math 71 73 75 74
Comp 70 71 72 73

部分选择,需要排序

层级

为多层索引添加一层

平铺结构化列

缺失数据

缺失数据 文档。

向前填充逆序时间序列。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
In [100]: df = pd.DataFrame(np.random.randn(6, 1),
.....: index=pd.date_range('2013-08-01', periods=6, freq='B'),
.....: columns=list('A'))
.....:

In [101]: df.loc[df.index[3], 'A'] = np.nan

In [102]: df
Out[102]:
A
2013-08-01 0.721555
2013-08-02 -0.706771
2013-08-05 -1.039575
2013-08-06 NaN
2013-08-07 -0.424972
2013-08-08 0.567020

In [103]: df.reindex(df.index[::-1]).ffill()
Out[103]:
A
2013-08-08 0.567020
2013-08-07 -0.424972
2013-08-06 -0.424972
2013-08-05 -1.039575
2013-08-02 -0.706771
2013-08-01 0.721555

空值时重置为 0,有值时累加

替换

用反引用替换

分组

分组 文档。

用 apply 执行分组基础操作

与聚合不同,传递给 DataFrame 子集的 apply 可回调,可以访问所有列。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
In [104]: df = pd.DataFrame({'animal': 'cat dog cat fish dog cat cat'.split(),
.....: 'size': list('SSMMMLL'),
.....: 'weight': [8, 10, 11, 1, 20, 12, 12],
.....: 'adult': [False] * 5 + [True] * 2})
.....:

In [105]: df
Out[105]:
animal size weight adult
0 cat S 8 False
1 dog S 10 False
2 cat M 11 False
3 fish M 1 False
4 dog M 20 False
5 cat L 12 True
6 cat L 12 True

# 提取 size 列最重的动物列表
In [106]: df.groupby('animal').apply(lambda subf: subf['size'][subf['weight'].idxmax()])
Out[106]:
animal
cat L
dog M
fish M
dtype: object

使用 get_group

1
2
3
4
5
6
7
8
9
In [107]: gb = df.groupby(['animal'])

In [108]: gb.get_group('cat')
Out[108]:
animal size weight adult
0 cat S 8 False
2 cat M 11 False
5 cat L 12 True
6 cat L 12 True

为同一分组的不同内容使用 Apply 函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
In [109]: def GrowUp(x):
.....: avg_weight = sum(x[x['size'] == 'S'].weight * 1.5)
.....: avg_weight += sum(x[x['size'] == 'M'].weight * 1.25)
.....: avg_weight += sum(x[x['size'] == 'L'].weight)
.....: avg_weight /= len(x)
.....: return pd.Series(['L', avg_weight, True],
.....: index=['size', 'weight', 'adult'])
.....:

In [110]: expected_df = gb.apply(GrowUp)

In [111]: expected_df
Out[111]:
size weight adult
animal
cat L 12.4375 True
dog L 20.0000 True
fish L 1.2500 True

Apply 函数扩展

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
In [112]: S = pd.Series([i / 100.0 for i in range(1, 11)])

In [113]: def cum_ret(x, y):
.....: return x * (1 + y)
.....:

In [114]: def red(x):
.....: return functools.reduce(cum_ret, x, 1.0)
.....:

In [115]: S.expanding().apply(red, raw=True)
Out[115]:
0 1.010000
1 1.030200
2 1.061106
3 1.103550
4 1.158728
5 1.228251
6 1.314229
7 1.419367
8 1.547110
9 1.701821
dtype: float64

用分组里的剩余值的平均值进行替换

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
In [116]: df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, -1, 1, 2]})

In [117]: gb = df.groupby('A')

In [118]: def replace(g):
.....: mask = g < 0
.....: return g.where(mask, g[~mask].mean())
.....:

In [119]: gb.transform(replace)
Out[119]:
B
0 1.0
1 -1.0
2 1.5
3 1.5

按聚合数据排序

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
In [120]: df = pd.DataFrame({'code': ['foo', 'bar', 'baz'] * 2,
.....: 'data': [0.16, -0.21, 0.33, 0.45, -0.59, 0.62],
.....: 'flag': [False, True] * 3})
.....:

In [121]: code_groups = df.groupby('code')

In [122]: agg_n_sort_order = code_groups[['data']].transform(sum).sort_values(by='data')

In [123]: sorted_df = df.loc[agg_n_sort_order.index]

In [124]: sorted_df
Out[124]:
code data flag
1 bar -0.21 True
4 bar -0.59 False
0 foo 0.16 False
3 foo 0.45 True
2 baz 0.33 False
5 baz 0.62 True

创建多个聚合列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
In [125]: rng = pd.date_range(start="2014-10-07", periods=10, freq='2min')

In [126]: ts = pd.Series(data=list(range(10)), index=rng)

In [127]: def MyCust(x):
.....: if len(x) > 2:
.....: return x[1] * 1.234
.....: return pd.NaT
.....:

In [128]: mhc = {'Mean': np.mean, 'Max': np.max, 'Custom': MyCust}

In [129]: ts.resample("5min").apply(mhc)
Out[129]:
Mean 2014-10-07 00:00:00 1
2014-10-07 00:05:00 3.5
2014-10-07 00:10:00 6
2014-10-07 00:15:00 8.5
Max 2014-10-07 00:00:00 2
2014-10-07 00:05:00 4
2014-10-07 00:10:00 7
2014-10-07 00:15:00 9
Custom 2014-10-07 00:00:00 1.234
2014-10-07 00:05:00 NaT
2014-10-07 00:10:00 7.404
2014-10-07 00:15:00 NaT
dtype: object

In [130]: ts
Out[130]:
2014-10-07 00:00:00 0
2014-10-07 00:02:00 1
2014-10-07 00:04:00 2
2014-10-07 00:06:00 3
2014-10-07 00:08:00 4
2014-10-07 00:10:00 5
2014-10-07 00:12:00 6
2014-10-07 00:14:00 7
2014-10-07 00:16:00 8
2014-10-07 00:18:00 9
Freq: 2T, dtype: int64

为 DataFrame 创建值计数列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
In [131]: df = pd.DataFrame({'Color': 'Red Red Red Blue'.split(),
.....: 'Value': [100, 150, 50, 50]})
.....:

In [132]: df
Out[132]:
Color Value
0 Red 100
1 Red 150
2 Red 50
3 Blue 50

In [133]: df['Counts'] = df.groupby(['Color']).transform(len)

In [134]: df
Out[134]:
Color Value Counts
0 Red 100 3
1 Red 150 3
2 Red 50 3
3 Blue 50 1

基于索引唯一某列不同分组的值

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
In [135]: df = pd.DataFrame({'line_race': [10, 10, 8, 10, 10, 8],
.....: 'beyer': [99, 102, 103, 103, 88, 100]},
.....: index=['Last Gunfighter', 'Last Gunfighter',
.....: 'Last Gunfighter', 'Paynter', 'Paynter',
.....: 'Paynter'])
.....:

In [136]: df
Out[136]:
line_race beyer
Last Gunfighter 10 99
Last Gunfighter 10 102
Last Gunfighter 8 103
Paynter 10 103
Paynter 10 88
Paynter 8 100

In [137]: df['beyer_shifted'] = df.groupby(level=0)['beyer'].shift(1)

In [138]: df
Out[138]:
line_race beyer beyer_shifted
Last Gunfighter 10 99 NaN
Last Gunfighter 10 102 99.0
Last Gunfighter 8 103 102.0
Paynter 10 103 NaN
Paynter 10 88 103.0
Paynter 8 100 88.0

选择每组最大值的行

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
In [139]: df = pd.DataFrame({'host': ['other', 'other', 'that', 'this', 'this'],
.....: 'service': ['mail', 'web', 'mail', 'mail', 'web'],
.....: 'no': [1, 2, 1, 2, 1]}).set_index(['host', 'service'])
.....:

In [140]: mask = df.groupby(level=0).agg('idxmax')

In [141]: df_count = df.loc[mask['no']].reset_index()

In [142]: df_count
Out[142]:
host service no
0 other web 2
1 that mail 1
2 this mail 2

Python itertools.groupby 式分组

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
In [143]: df = pd.DataFrame([0, 1, 0, 1, 1, 1, 0, 1, 1], columns=['A'])

In [144]: df.A.groupby((df.A != df.A.shift()).cumsum()).groups
Out[144]:
{1: Int64Index([0], dtype='int64'),
2: Int64Index([1], dtype='int64'),
3: Int64Index([2], dtype='int64'),
4: Int64Index([3, 4, 5], dtype='int64'),
5: Int64Index([6], dtype='int64'),
6: Int64Index([7, 8], dtype='int64')}

In [145]: df.A.groupby((df.A != df.A.shift()).cumsum()).cumsum()
Out[145]:
0 0
1 1
2 0
3 1
4 2
5 3
6 0
7 1
8 2
Name: A, dtype: int64

扩展数据

Alignment and to-date

基于计数值进行移动窗口计算

按时间间隔计算滚动平均

分割

分割 DataFrame

按指定逻辑,将不同的行,分割成 DataFrame 列表。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
In [146]: df = pd.DataFrame(data={'Case': ['A', 'A', 'A', 'B', 'A', 'A', 'B', 'A',
.....: 'A'],
.....: 'Data': np.random.randn(9)})
.....:

In [147]: dfs = list(zip(*df.groupby((1 * (df['Case'] == 'B')).cumsum()
.....: .rolling(window=3, min_periods=1).median())))[-1]
.....:

In [148]: dfs[0]
Out[148]:
Case Data
0 A 0.276232
1 A -1.087401
2 A -0.673690
3 B 0.113648

In [149]: dfs[1]
Out[149]:
Case Data
4 A -1.478427
5 A 0.524988
6 B 0.404705

In [150]: dfs[2]
Out[150]:
Case Data
7 A 0.577046
8 A -1.715002

透视表

透视表 文档。

部分汇总与小计

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
In [151]: df = pd.DataFrame(data={'Province': ['ON', 'QC', 'BC', 'AL', 'AL', 'MN', 'ON'],
.....: 'City': ['Toronto', 'Montreal', 'Vancouver',
.....: 'Calgary', 'Edmonton', 'Winnipeg',
.....: 'Windsor'],
.....: 'Sales': [13, 6, 16, 8, 4, 3, 1]})
.....:

In [152]: table = pd.pivot_table(df, values=['Sales'], index=['Province'],
.....: columns=['City'], aggfunc=np.sum, margins=True)
.....:

In [153]: table.stack('City')
Out[153]:
Sales
Province City
AL All 12.0
Calgary 8.0
Edmonton 4.0
BC All 16.0
Vancouver 16.0
... ...
All Montreal 6.0
Toronto 13.0
Vancouver 16.0
Windsor 1.0
Winnipeg 3.0

[20 rows x 1 columns]

类似 R 的 plyr 频率表

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
In [154]: grades = [48, 99, 75, 80, 42, 80, 72, 68, 36, 78]

In [155]: df = pd.DataFrame({'ID': ["x%d" % r for r in range(10)],
.....: 'Gender': ['F', 'M', 'F', 'M', 'F',
.....: 'M', 'F', 'M', 'M', 'M'],
.....: 'ExamYear': ['2007', '2007', '2007', '2008', '2008',
.....: '2008', '2008', '2009', '2009', '2009'],
.....: 'Class': ['algebra', 'stats', 'bio', 'algebra',
.....: 'algebra', 'stats', 'stats', 'algebra',
.....: 'bio', 'bio'],
.....: 'Participated': ['yes', 'yes', 'yes', 'yes', 'no',
.....: 'yes', 'yes', 'yes', 'yes', 'yes'],
.....: 'Passed': ['yes' if x > 50 else 'no' for x in grades],
.....: 'Employed': [True, True, True, False,
.....: False, False, False, True, True, False],
.....: 'Grade': grades})
.....:

In [156]: df.groupby('ExamYear').agg({'Participated': lambda x: x.value_counts()['yes'],
.....: 'Passed': lambda x: sum(x == 'yes'),
.....: 'Employed': lambda x: sum(x),
.....: 'Grade': lambda x: sum(x) / len(x)})
.....:
Out[156]:
Participated Passed Employed Grade
ExamYear
2007 3 2 3 74.000000
2008 3 3 0 68.500000
2009 3 2 2 60.666667

按年生成 DataFrame

跨列表创建年月:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
In [157]: df = pd.DataFrame({'value': np.random.randn(36)},
.....: index=pd.date_range('2011-01-01', freq='M', periods=36))
.....:

In [158]: pd.pivot_table(df, index=df.index.month, columns=df.index.year,
.....: values='value', aggfunc='sum')
.....:
Out[158]:
2011 2012 2013
1 -1.039268 -0.968914 2.565646
2 -0.370647 -1.294524 1.431256
3 -1.157892 0.413738 1.340309
4 -1.344312 0.276662 -1.170299
5 0.844885 -0.472035 -0.226169
6 1.075770 -0.013960 0.410835
7 -0.109050 -0.362543 0.813850
8 1.643563 -0.006154 0.132003
9 -1.469388 -0.923061 -0.827317
10 0.357021 0.895717 -0.076467
11 -0.674600 0.805244 -1.187678
12 -1.776904 -1.206412 1.130127

Apply 函数

把嵌入列表转换为多层索引 DataFrame

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
In [159]: df = pd.DataFrame(data={'A': [[2, 4, 8, 16], [100, 200], [10, 20, 30]],
.....: 'B': [['a', 'b', 'c'], ['jj', 'kk'], ['ccc']]},
.....: index=['I', 'II', 'III'])
.....:

In [160]: def SeriesFromSubList(aList):
.....: return pd.Series(aList)
.....:

In [161]: df_orgz = pd.concat({ind: row.apply(SeriesFromSubList)
.....: for ind, row in df.iterrows()})
.....:

In [162]: df_orgz
Out[162]:
0 1 2 3
I A 2 4 8 16.0
B a b c NaN
II A 100 200 NaN NaN
B jj kk NaN NaN
III A 10 20 30 NaN
B ccc NaN NaN NaN

返回 Series

Rolling Apply to multiple columns where function calculates a Series before a Scalar from the Series is returned

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
In [163]: df = pd.DataFrame(data=np.random.randn(2000, 2) / 10000,
.....: index=pd.date_range('2001-01-01', periods=2000),
.....: columns=['A', 'B'])
.....:

In [164]: df
Out[164]:
A B
2001-01-01 -0.000144 -0.000141
2001-01-02 0.000161 0.000102
2001-01-03 0.000057 0.000088
2001-01-04 -0.000221 0.000097
2001-01-05 -0.000201 -0.000041
... ... ...
2006-06-19 0.000040 -0.000235
2006-06-20 -0.000123 -0.000021
2006-06-21 -0.000113 0.000114
2006-06-22 0.000136 0.000109
2006-06-23 0.000027 0.000030

[2000 rows x 2 columns]

In [165]: def gm(df, const):
.....: v = ((((df.A + df.B) + 1).cumprod()) - 1) * const
.....: return v.iloc[-1]
.....:

In [166]: s = pd.Series({df.index[i]: gm(df.iloc[i:min(i + 51, len(df) - 1)], 5)
.....: for i in range(len(df) - 50)})
.....:

In [167]: s
Out[167]:
2001-01-01 0.000930
2001-01-02 0.002615
2001-01-03 0.001281
2001-01-04 0.001117
2001-01-05 0.002772
...
2006-04-30 0.003296
2006-05-01 0.002629
2006-05-02 0.002081
2006-05-03 0.004247
2006-05-04 0.003928
Length: 1950, dtype: float64

返回标量值

Rolling Apply to multiple columns where function returns a Scalar (Volume Weighted Average Price)
对多列执行滚动 Apply,函数返回标量值(成交价加权平均价)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
In [168]: rng = pd.date_range(start='2014-01-01', periods=100)

In [169]: df = pd.DataFrame({'Open': np.random.randn(len(rng)),
.....: 'Close': np.random.randn(len(rng)),
.....: 'Volume': np.random.randint(100, 2000, len(rng))},
.....: index=rng)
.....:

In [170]: df
Out[170]:
Open Close Volume
2014-01-01 -1.611353 -0.492885 1219
2014-01-02 -3.000951 0.445794 1054
2014-01-03 -0.138359 -0.076081 1381
2014-01-04 0.301568 1.198259 1253
2014-01-05 0.276381 -0.669831 1728
... ... ... ...
2014-04-06 -0.040338 0.937843 1188
2014-04-07 0.359661 -0.285908 1864
2014-04-08 0.060978 1.714814 941
2014-04-09 1.759055 -0.455942 1065
2014-04-10 0.138185 -1.147008 1453

[100 rows x 3 columns]

In [171]: def vwap(bars):
.....: return ((bars.Close * bars.Volume).sum() / bars.Volume.sum())
.....:

In [172]: window = 5

In [173]: s = pd.concat([(pd.Series(vwap(df.iloc[i:i + window]),
.....: index=[df.index[i + window]]))
.....: for i in range(len(df) - window)])
.....:

In [174]: s.round(2)
Out[174]:
2014-01-06 0.02
2014-01-07 0.11
2014-01-08 0.10
2014-01-09 0.07
2014-01-10 -0.29
...
2014-04-06 -0.63
2014-04-07 -0.02
2014-04-08 -0.03
2014-04-09 0.34
2014-04-10 0.29
Length: 95, dtype: float64

时间序列

删除指定时间之外的数据

用 indexer 提取在时间范围内的数据

创建不包括周末,且只包含指定时间的日期时间范围

矢量查询

聚合与绘制时间序列

把以小时为列,天为行的矩阵转换为连续的时间序列。 如何重排 DataFrame?

重建索引为指定频率时,如何处理重复值

为 DatetimeIndex 里每条记录计算当月第一天

1
2
3
4
5
6
7
In [175]: dates = pd.date_range('2000-01-01', periods=5)

In [176]: dates.to_period(freq='M').to_timestamp()
Out[176]:
DatetimeIndex(['2000-01-01', '2000-01-01', '2000-01-01', '2000-01-01',
'2000-01-01'],
dtype='datetime64[ns]', freq=None)

重采样

重采样 文档。

用 Grouper 代替 TimeGrouper 处理时间分组的值

含缺失值的时间分组

Grouper 的有效时间频率参数

用多层索引分组

用 TimeGrouper 与另一个分组创建子分组,再 Apply 自定义函数

按自定义时间段重采样

不添加新日期,重采样某日数据

按分钟重采样数据

分组重采样

合并

连接 docs. The Join文档。

模拟 R 的 rbind:追加两个重叠索引的 DataFrame

1
2
3
4
5
In [177]: rng = pd.date_range('2000-01-01', periods=6)

In [178]: df1 = pd.DataFrame(np.random.randn(6, 3), index=rng, columns=['A', 'B', 'C'])

In [179]: df2 = df1.copy()

基于 df 构建器,需要ignore_index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
In [180]: df = df1.append(df2, ignore_index=True)

In [181]: df
Out[181]:
A B C
0 -0.870117 -0.479265 -0.790855
1 0.144817 1.726395 -0.464535
2 -0.821906 1.597605 0.187307
3 -0.128342 -1.511638 -0.289858
4 0.399194 -1.430030 -0.639760
5 1.115116 -2.012600 1.810662
6 -0.870117 -0.479265 -0.790855
7 0.144817 1.726395 -0.464535
8 -0.821906 1.597605 0.187307
9 -0.128342 -1.511638 -0.289858
10 0.399194 -1.430030 -0.639760
11 1.115116 -2.012600 1.810662

自连接 DataFrame

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
In [182]: df = pd.DataFrame(data={'Area': ['A'] * 5 + ['C'] * 2,
.....: 'Bins': [110] * 2 + [160] * 3 + [40] * 2,
.....: 'Test_0': [0, 1, 0, 1, 2, 0, 1],
.....: 'Data': np.random.randn(7)})
.....:

In [183]: df
Out[183]:
Area Bins Test_0 Data
0 A 110 0 -0.433937
1 A 110 1 -0.160552
2 A 160 0 0.744434
3 A 160 1 1.754213
4 A 160 2 0.000850
5 C 40 0 0.342243
6 C 40 1 1.070599

In [184]: df['Test_1'] = df['Test_0'] - 1

In [185]: pd.merge(df, df, left_on=['Bins', 'Area', 'Test_0'],
.....: right_on=['Bins', 'Area', 'Test_1'],
.....: suffixes=('_L', '_R'))
.....:
Out[185]:
Area Bins Test_0_L Data_L Test_1_L Test_0_R Data_R Test_1_R
0 A 110 0 -0.433937 -1 1 -0.160552 0
1 A 160 0 0.744434 -1 1 1.754213 0
2 A 160 1 1.754213 0 2 0.000850 1
3 C 40 0 0.342243 -1 1 1.070599 0

如何设置索引与连接

KDB 式的 asof 连接

基于符合条件的值进行连接

基于范围里的值,用 searchsorted 合并

可视化

可视化 文档。

让 Matplotlib 看上去像 R

设置 x 轴的主次标签

在 iPython Notebook 里创建多个可视图

创建多行可视图

绘制热力图

标记时间序列图

标记时间序列图 #2

用 Pandas、Vincent、xlsxwriter 生成 Excel 文件里的嵌入可视图

为分层变量的每个四分位数绘制箱型图

1
2
3
4
5
6
7
8
9
10
11
12
13
In [186]: df = pd.DataFrame(
.....: {'stratifying_var': np.random.uniform(0, 100, 20),
.....: 'price': np.random.normal(100, 5, 20)})
.....:

In [187]: df['quartiles'] = pd.qcut(
.....: df['stratifying_var'],
.....: 4,
.....: labels=['0-25%', '25-50%', '50-75%', '75-100%'])
.....:

In [188]: df.boxplot(column='price', by='quartiles')
Out[188]: <matplotlib.axes._subplots.AxesSubplot at 0x7efff077f910>

../_images/quartile_boxplot.png

数据输入输出

SQL 与 HDF5 性能对比

CSV

CSV文档

read_csv 函数实战

把 DataFrame 追加到 CSV 文件

分块读取 CSV

分块读取指定的行

只读取 DataFrame 的前几列

读取不是 gzip 或 bz2 压缩(read_csv 可识别的内置压缩格式)的文件。本例在介绍如何读取 WinZip 压缩文件的同时,还介绍了在环境管理器里打开文件,并读取内容的通用操作方式。详见本链接

推断文件数据类型

处理出错数据

处理出错数据 II

用 Unix 时间戳读取 CSV,并转为本地时区

写入多行索引 CSV 时,不写入重复值

从多个文件读取数据,创建单个 DataFrame

最好的方式是先一个个读取单个文件,然后再把每个文件的内容存成列表,再用 pd.concat() 组合成一个 DataFrame:

1
2
3
4
5
6
7
8
In [189]: for i in range(3):
.....: data = pd.DataFrame(np.random.randn(10, 4))
.....: data.to_csv('file_{}.csv'.format(i))
.....:

In [190]: files = ['file_0.csv', 'file_1.csv', 'file_2.csv']

In [191]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)

还可以用同样的方法读取所有匹配同一模式的文件,下面这个例子使用的是glob

1
2
3
4
5
6
7
In [192]: import glob

In [193]: import os

In [194]: files = glob.glob('file_*.csv')

In [195]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)

最后,这种方式也适用于 io 文档 介绍的其它 pd.read_* 函数。

解析多列里的日期组件

用一种格式解析多列的日期组件,速度更快。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
In [196]: i = pd.date_range('20000101', periods=10000)

In [197]: df = pd.DataFrame({'year': i.year, 'month': i.month, 'day': i.day})

In [198]: df.head()
Out[198]:
year month day
0 2000 1 1
1 2000 1 2
2 2000 1 3
3 2000 1 4
4 2000 1 5

In [199]: %timeit pd.to_datetime(df.year * 10000 + df.month * 100 + df.day, format='%Y%m%d')
.....: ds = df.apply(lambda x: "%04d%02d%02d" % (x['year'],
.....: x['month'], x['day']), axis=1)
.....: ds.head()
.....: %timeit pd.to_datetime(ds)
.....:
10.6 ms +- 698 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
3.21 ms +- 36.4 us per loop (mean +- std. dev. of 7 runs, 100 loops each)

跳过标题与数据之间的行

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
In [200]: data = """;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: date;Param1;Param2;Param4;Param5
.....: ;m²;°C;m²;m
.....: ;;;;
.....: 01.01.1990 00:00;1;1;2;3
.....: 01.01.1990 01:00;5;3;4;5
.....: 01.01.1990 02:00;9;5;6;7
.....: 01.01.1990 03:00;13;7;8;9
.....: 01.01.1990 04:00;17;9;10;11
.....: 01.01.1990 05:00;21;11;12;13
.....: """
.....:
选项 1:显式跳过行
1
2
3
4
5
6
7
8
9
10
11
12
13
14
In [201]: from io import StringIO

In [202]: pd.read_csv(StringIO(data), sep=';', skiprows=[11, 12],
.....: index_col=0, parse_dates=True, header=10)
.....:
Out[202]:
Param1 Param2 Param4 Param5
date
1990-01-01 00:00:00 1 1 2 3
1990-01-01 01:00:00 5 3 4 5
1990-01-01 02:00:00 9 5 6 7
1990-01-01 03:00:00 13 7 8 9
1990-01-01 04:00:00 17 9 10 11
1990-01-01 05:00:00 21 11 12 13
选项 2:读取列名,然后再读取数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
In [203]: pd.read_csv(StringIO(data), sep=';', header=10, nrows=10).columns
Out[203]: Index(['date', 'Param1', 'Param2', 'Param4', 'Param5'], dtype='object')

In [204]: columns = pd.read_csv(StringIO(data), sep=';', header=10, nrows=10).columns

In [205]: pd.read_csv(StringIO(data), sep=';', index_col=0,
.....: header=12, parse_dates=True, names=columns)
.....:
Out[205]:
Param1 Param2 Param4 Param5
date
1990-01-01 00:00:00 1 1 2 3
1990-01-01 01:00:00 5 3 4 5
1990-01-01 02:00:00 9 5 6 7
1990-01-01 03:00:00 13 7 8 9
1990-01-01 04:00:00 17 9 10 11
1990-01-01 05:00:00 21 11 12 13

SQL

SQL 文档

用 SQL 读取数据库

Excel

Excel 文档

读取文件式句柄

用 XlsxWriter 修改输出格式

HTML

从不能处理默认请求 header 的服务器读取 HTML 表格

HDFStore

HDFStores文档

时间戳索引简单查询

用链式多表架构管理异构数据

在硬盘上合并数百万行的表格

避免多进程/线程存储数据出现不一致

按块对大规模数据存储去重的本质是递归还原操作。这里介绍了一个函数,可以从 CSV 文件里按块提取数据,解析日期后,再按块存储。

按块读取 CSV 文件,并保存

追加到已存储的文件,且确保索引唯一

大规模数据工作流

读取一系列文件,追加时采用全局唯一索引

用低分组密度分组 HDFStore 文件

用高分组密度分组 HDFStore 文件

HDFStore 文件结构化查询

HDFStore 计数

HDFStore 异常解答

用字符串设置 min_itemsize

用 ptrepack 创建完全排序索引

把属性存至分组节点

1
2
3
4
5
6
7
8
9
10
11
In [206]: df = pd.DataFrame(np.random.randn(8, 3))

In [207]: store = pd.HDFStore('test.h5')

In [208]: store.put('df', df)

# 用 pickle 存储任意 Python 对象
In [209]: store.get_storer('df').attrs.my_attribute = {'A': 10}

In [210]: store.get_storer('df').attrs.my_attribute
Out[210]: {'A': 10}

二进制文件

读取 C 结构体数组组成的二进制文件,Pandas 支持 NumPy 记录数组。 比如说,名为 main.c 的文件包含下列 C 代码,并在 64 位机器上用 gcc main.c -std=gnu99 进行编译。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include <stdio.h>
#include <stdint.h>

typedef struct _Data
{
int32_t count;
double avg;
float scale;
} Data;

int main(int argc, const char *argv[])
{
size_t n = 10;
Data d[n];

for (int i = 0; i < n; ++i)
{
d[i].count = i;
d[i].avg = i + 1.0;
d[i].scale = (float) i + 2.0f;
}

FILE *file = fopen("binary.dat", "wb");
fwrite(&d, sizeof(Data), n, file);
fclose(file);

return 0;
}

下列 Python 代码读取二进制二建 binary.dat,并将之存为 pandas DataFrame,每个结构体的元素对应 DataFrame 里的列:

1
2
3
4
5
6
7
8
names = 'count', 'avg', 'scale'

# 注意:因为结构体填充,位移量比类型尺寸大
offsets = 0, 8, 16
formats = 'i4', 'f8', 'f4'
dt = np.dtype({'names': names, 'offsets': offsets, 'formats': formats},
align=True)
df = pd.DataFrame(np.fromfile('binary.dat', dt))

::: tip 注意

不同机器上创建的文件因其架构不同,结构化元素的位移量也不同,原生二进制格式文件不能跨平台使用,因此不建议作为通用数据存储格式。建议用 Pandas IO 功能支持的 HDF5 或 msgpack 文件。

:::

计算

基于采样的时间序列数值整合

相关性

DataFrame.corr() 计算得出的相关矩阵的下(或上)三角形式一般都非常有用。下例通过把布尔掩码传递给 where 可以实现这一功能:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
In [211]: df = pd.DataFrame(np.random.random(size=(100, 5)))

In [212]: corr_mat = df.corr()

In [213]: mask = np.tril(np.ones_like(corr_mat, dtype=np.bool), k=-1)

In [214]: corr_mat.where(mask)
Out[214]:
0 1 2 3 4
0 NaN NaN NaN NaN NaN
1 -0.018923 NaN NaN NaN NaN
2 -0.076296 -0.012464 NaN NaN NaN
3 -0.169941 -0.289416 0.076462 NaN NaN
4 0.064326 0.018759 -0.084140 -0.079859 NaN

除了命名相关类型之外,DataFrame.corr 还接受回调,此处计算 DataFrame 对象的距离相关矩阵

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
In [215]: def distcorr(x, y):
.....: n = len(x)
.....: a = np.zeros(shape=(n, n))
.....: b = np.zeros(shape=(n, n))
.....: for i in range(n):
.....: for j in range(i + 1, n):
.....: a[i, j] = abs(x[i] - x[j])
.....: b[i, j] = abs(y[i] - y[j])
.....: a += a.T
.....: b += b.T
.....: a_bar = np.vstack([np.nanmean(a, axis=0)] * n)
.....: b_bar = np.vstack([np.nanmean(b, axis=0)] * n)
.....: A = a - a_bar - a_bar.T + np.full(shape=(n, n), fill_value=a_bar.mean())
.....: B = b - b_bar - b_bar.T + np.full(shape=(n, n), fill_value=b_bar.mean())
.....: cov_ab = np.sqrt(np.nansum(A * B)) / n
.....: std_a = np.sqrt(np.sqrt(np.nansum(A**2)) / n)
.....: std_b = np.sqrt(np.sqrt(np.nansum(B**2)) / n)
.....: return cov_ab / std_a / std_b
.....:

In [216]: df = pd.DataFrame(np.random.normal(size=(100, 3)))

In [217]: df.corr(method=distcorr)
Out[217]:
0 1 2
0 1.000000 0.199653 0.214871
1 0.199653 1.000000 0.195116
2 0.214871 0.195116 1.000000

时间差

时间差文档。

使用时间差

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
In [218]: import datetime

In [219]: s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D'))

In [220]: s - s.max()
Out[220]:
0 -2 days
1 -1 days
2 0 days
dtype: timedelta64[ns]

In [221]: s.max() - s
Out[221]:
0 2 days
1 1 days
2 0 days
dtype: timedelta64[ns]

In [222]: s - datetime.datetime(2011, 1, 1, 3, 5)
Out[222]:
0 364 days 20:55:00
1 365 days 20:55:00
2 366 days 20:55:00
dtype: timedelta64[ns]

In [223]: s + datetime.timedelta(minutes=5)
Out[223]:
0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]

In [224]: datetime.datetime(2011, 1, 1, 3, 5) - s
Out[224]:
0 -365 days +03:05:00
1 -366 days +03:05:00
2 -367 days +03:05:00
dtype: timedelta64[ns]

In [225]: datetime.timedelta(minutes=5) + s
Out[225]:
0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]

日期加减

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
In [226]: deltas = pd.Series([datetime.timedelta(days=i) for i in range(3)])

In [227]: df = pd.DataFrame({'A': s, 'B': deltas})

In [228]: df
Out[228]:
A B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days

In [229]: df['New Dates'] = df['A'] + df['B']

In [230]: df['Delta'] = df['A'] - df['New Dates']

In [231]: df
Out[231]:
A B New Dates Delta
0 2012-01-01 0 days 2012-01-01 0 days
1 2012-01-02 1 days 2012-01-03 -1 days
2 2012-01-03 2 days 2012-01-05 -2 days

In [232]: df.dtypes
Out[232]:
A datetime64[ns]
B timedelta64[ns]
New Dates datetime64[ns]
Delta timedelta64[ns]
dtype: object

其它示例

与 datetime 类似,用 np.nan 可以把值设为 NaT

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
In [233]: y = s - s.shift()

In [234]: y
Out[234]:
0 NaT
1 1 days
2 1 days
dtype: timedelta64[ns]

In [235]: y[1] = np.nan

In [236]: y
Out[236]:
0 NaT
1 NaT
2 1 days
dtype: timedelta64[ns]

轴别名

设置全局轴别名,可以定义以下两个函数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
In [237]: def set_axis_alias(cls, axis, alias):
.....: if axis not in cls._AXIS_NUMBERS:
.....: raise Exception("invalid axis [%s] for alias [%s]" % (axis, alias))
.....: cls._AXIS_ALIASES[alias] = axis
.....:
In [238]: def clear_axis_alias(cls, axis, alias):
.....: if axis not in cls._AXIS_NUMBERS:
.....: raise Exception("invalid axis [%s] for alias [%s]" % (axis, alias))
.....: cls._AXIS_ALIASES.pop(alias, None)
.....:
In [239]: set_axis_alias(pd.DataFrame, 'columns', 'myaxis2')

In [240]: df2 = pd.DataFrame(np.random.randn(3, 2), columns=['c1', 'c2'],
.....: index=['i1', 'i2', 'i3'])
.....:

In [241]: df2.sum(axis='myaxis2')
Out[241]:
i1 -0.461013
i2 2.040016
i3 0.904681
dtype: float64

In [242]: clear_axis_alias(pd.DataFrame, 'columns', 'myaxis2')

创建示例数据

类似 R 的 expand.grid() 函数,用不同类型的值组生成 DataFrame,需要创建键是列名,值是数据值列表的字典:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
In [243]: def expand_grid(data_dict):
.....: rows = itertools.product(*data_dict.values())
.....: return pd.DataFrame.from_records(rows, columns=data_dict.keys())
.....:

In [244]: df = expand_grid({'height': [60, 70],
.....: 'weight': [100, 140, 180],
.....: 'sex': ['Male', 'Female']})
.....:

In [245]: df
Out[245]:
height weight sex
0 60 100 Male
1 60 100 Female
2 60 140 Male
3 60 140 Female
4 60 180 Male
5 60 180 Female
6 70 100 Male
7 70 100 Female
8 70 140 Male
9 70 140 Female
10 70 180 Male
11 70 180 Female