2.3 进程同步

1 进程同步的基本概念

进程同步指的是同步和互斥两种行为。

两种制约关系

针对两种制约关系,合作制约关系和互斥制约关系,需要通过同步机制实现。

  • 直接制约关系(合作)。由于多个进程相互合作产生,使得进程有一定的先后执行关系。
  • 间接制约关系(互斥)。由于多个进程资源共享产生,多个进程在同一时刻只有一个进程能进入临界区。

显然,同步是一种更为复杂的互斥,而互斥是一种特殊的同步。也就是说互斥是两个任务之间不可以同时运行,他们会相互排斥,必须等待一个线程运行完毕,另一个才能运行,而同步也是不能同时运行,但他是必须要安照某种次序来运行相应的线程(也是一种互斥)!因此互斥具有唯一性和排它性,但互斥并不限制任务的运行顺序,即任务是无序的,而同步的任务之间则有顺序关系。

临界资源和临界区

  • 共享的互斥资源称为临界资源
  • 对临界资源进行访问的那段代码称为临界区
  • 为了互斥访问临界资源,每个进程在进入临界区之前,需要先进行检查。
1
2
3
4
5
repeat
entry section
critical section;//临界区
exit section
until false

同步机制的规则

  1. 空闲让进。当无进程处于临界区时,表明临界资源处于空闲状态,应允许一个请求进入临界区的进程立即进入自己的临界区,以有效地利用临界资源。
  2. 忙则等待。当已有进程进入临界区时,表明临界资源正在被访问,因而其它试图进入临界区的进程必须等待,以保证对临界资源的互斥访问。
  3. 有限等待。对要求访问临界资源的进程,应保证在有限时间内能进入自己的临界区,以免陷入“死等”状态。
  4. 让权等待。当进程不能进入自己的临界区时,应立即释放处理机,以免进程陷入“忙等”状态。

2 进程同步机制

进程同步机制——锁

在同步机制中,常用一个变量来代表临界资源的状态,称之为锁。通常用“0”代表资源可用,相当于锁打开,用“1”代表资源已被占用,相当于锁闭合。

对锁的操作有两种:一种是关锁操作,一种是开锁操作

1
2
3
4
5
6
7
8
9
10
11
12
//关锁
lock(w)
{
test:if(w==1) go to test;
else w==1;
}

//开锁
unlock(w)
{
w=0;
}

进程同步机制——信号量

  • 信号量(Semaphore)是一个整型变量,可以对其执行 down 和 up 操作,也就是常见的 P 和 V 操作。

    • down/wait :如果信号量大于 0 ,执行 -1 操作;如果信号量等于 0,进程睡眠,等待信号量大于 0;
    • up/signal :对信号量执行 +1 操作,唤醒睡眠的进程让其完成 down 操作。
  • down 和 up 操作需要被设计成原语,不可分割,通常的做法是在执行这些操作的时候屏蔽中断。

  • 如果信号量的取值只能为 0 或者 1,那么就成为了 互斥量(Mutex) ,0 表示临界区已经加锁,1 表示临界区解锁。

1
2
3
4
5
6
7
8
9
10
11
12
13
typedef int semaphore;
semaphore mutex = 1;
void P1() {
down(&mutex);
// 临界区
up(&mutex);
}

void P2() {
down(&mutex);
// 临界区
up(&mutex);
}

进程同步机制——条件变量

进程同步机制——信号

3 管程

管程定义

  • 使用信号量机制实现同步机制,使大量的同步操作分散在各个进程中。这不仅给系统的管理带来了麻烦,而且还会因同步操作的使用不当而导致系统死锁。而管程把控制的代码独立出来,不仅不容易出错,也使得客户端代码调用更容易。
  • 利用共享数据结构抽象地表示系统中的共享资源,而把对该共享数据结构实施的操作定义为一组过程,如资源的请求和释放过程 request 和 release。进程对共享资源的申请、释放和其它操作,都是通过这组过程对共享数据结构的操作来实现的,这组过程还可以根据资源的情况,或接受或阻塞进程的访问,确保每次仅有一个进程使用共享资源,这样就可以统一管理对共享资源的所有访问,实现进程互斥。

管程组成

  • 管程的名称;
  • 局部于管程内部的共享数据结构说明;
  • 对该数据结构进行操作的一组过程;
  • 对局部于管程内部的共享数据设置初始值的语句。

管程实现

  • 管程有一个重要特性:在一个时刻只能有一个进程使用管程。进程在无法继续执行的时候不能一直占用管程,否则其它进程永远不能使用管程。

  • 管程引入了条件变量condition以及相关的操作wait()signal() 来实现同步操作。对条件变量执行 wait() 操作会导致调用进程阻塞,把管程让出来给另一个进程持有。signal() 操作用于唤醒被阻塞的进程。

  • c 语言不支持管程,下面的示例代码使用了类 Pascal 语言来描述管程。示例代码的管程提供了 insert() 和 remove() 方法,客户端代码通过调用这两个方法来解决生产者-消费者问题。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
monitor ProducerConsumer
integer i;
condition c;

procedure insert();
begin
// ...
end;

procedure remove();
begin
// ...
end;
end monitor;

管程与线程对比

  1. 虽然二者都定义了数据结构,但进程定义的是私有数据结构 PCB,管程定义的是公共数据结构,如消息队列等;
  2. 二者都存在对各自数据结构上的操作,但进程是由顺序程序执行有关的操作,而管程主要是进行同步操作和初始化操作;
  3. 设置进程的目的在于实现系统的并发性,而管程的设置则是解决共享资源的互斥使用问题;
  4. 进程通过调用管程中的过程对共享数据结构实行操作,该过程就如通常的子程序一样被调用,因而管程为被动工作方式,进程则为主动工作方式;
  5. 进程之间能并发执行,而管程则不能与其调用者并发;
  6. 进程具有动态性,由“创建”而诞生,由“撤销”而消亡,而管程则是操作系统中的一个资源管理模块,供进程调用。

使用管程实现生产者-消费者问题

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
// 管程
monitor ProducerConsumer
condition full, empty;
integer count := 0;
condition c;

procedure insert(item: integer);
begin
if count = N then wait(full);
insert_item(item);
count := count + 1;
if count = 1 then signal(empty);
end;

function remove: integer;
begin
if count = 0 then wait(empty);
remove = remove_item;
count := count - 1;
if count = N -1 then signal(full);
end;
end monitor;

// 生产者客户端
procedure producer
begin
while true do
begin
item = produce_item;
ProducerConsumer.insert(item);
end
end;

// 消费者客户端
procedure consumer
begin
while true do
begin
item = ProducerConsumer.remove;
consume_item(item);
end
end;

5.1 经典同步问题——生产者消费者问题

问题描述

  • 使用一个缓冲区来保存物品,只有缓冲区没有满,生产者才可以放入物品;只有缓冲区不为空,消费者才可以拿走物品。

问题分析

  • 因为缓冲区属于临界资源,因此需要使用一个互斥量 mutex 来控制对缓冲区的互斥访问。

  • 为了同步生产者和消费者的行为,需要记录缓冲区中物品的数量。数量可以使用信号量来进行统计,这里需要使用两个信号量:empty 记录空缓冲区的数量,full 记录满缓冲区的数量。其中,empty 信号量是在生产者进程中使用,当 empty 不为 0 时,生产者才可以放入物品;full 信号量是在消费者进程中使用,当 full 信号量不为 0 时,消费者才可以取走物品。

  • 注意,不能先对缓冲区进行加锁,再测试信号量。也就是说,不能先执行 down(mutex) 再执行 down(empty)。如果这么做了,那么可能会出现这种情况:生产者对缓冲区加锁后,执行 down(empty) 操作,发现 empty = 0,此时生产者睡眠。消费者不能进入临界区,因为生产者对缓冲区加锁了,消费者就无法执行 up(empty) 操作,empty 永远都为 0,导致生产者永远等待下,不会释放锁,消费者因此也会永远等待下去。

算法实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#define N 100
typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

void producer() {
while(TRUE) {
int item = produce_item();
down(&empty);
down(&mutex);
insert_item(item);
up(&mutex);
up(&full);
}
}

void consumer() {
while(TRUE) {
down(&full);
down(&mutex);
int item = remove_item();
consume_item(item);
up(&mutex);
up(&empty);
}
}

5.2 经典同步问题——哲学家进餐问题

问题描述

  • 五个哲学家围着一张圆桌,每个哲学家面前放着食物。哲学家的生活有两种交替活动:吃饭以及思考。当一个哲学家吃饭时,需要先拿起自己左右两边的两根筷子,并且一次只能拿起一根筷子。

问题分析

  • 下面是一种错误的解法,如果所有哲学家同时拿起左手边的筷子,那么所有哲学家都在等待其它哲学家吃完并释放自己手中的筷子,导致死锁。
1
2
3
4
5
6
7
8
9
10
11
12
#define N 5

void philosopher(int i) {
while(TRUE) {
think();
take(i); // 拿起左边的筷子
take((i+1)%N); // 拿起右边的筷子
eat();
put(i);
put((i+1)%N);
}
}

算法实现

  • 为了防止死锁的发生,可以设置两个条件:

    • 必须同时拿起左右两根筷子;
    • 只有在两个邻居都没有进餐的情况下才允许进餐。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#define N 5
#define LEFT (i + N - 1) % N // 左邻居
#define RIGHT (i + 1) % N // 右邻居
#define THINKING 0
#define HUNGRY 1
#define EATING 2
typedef int semaphore;
int state[N]; // 跟踪每个哲学家的状态
semaphore mutex = 1; // 临界区的互斥,临界区是 state 数组,对其修改需要互斥
semaphore s[N]; // 每个哲学家一个信号量

void philosopher(int i) {
while(TRUE) {
think(i);
take_two(i);
eat(i);
put_two(i);
}
}

void take_two(int i) {
down(&mutex);
state[i] = HUNGRY;
check(i);
up(&mutex);
down(&s[i]); // 只有收到通知之后才可以开始吃,否则会一直等下去
}

void put_two(i) {
down(&mutex);
state[i] = THINKING;
check(LEFT); // 尝试通知左右邻居,自己吃完了,你们可以开始吃了
check(RIGHT);
up(&mutex);
}

void eat(int i) {
down(&mutex);
state[i] = EATING;
up(&mutex);
}

// 检查两个邻居是否都没有用餐,如果是的话,就 up(&s[i]),使得 down(&s[i]) 能够得到通知并继续执行
void check(i) {
if(state[i] == HUNGRY && state[LEFT] != EATING && state[RIGHT] !=EATING) {
state[i] = EATING;
up(&s[i]);
}
}

5.3 经典同步问题——读者-写者问题

问题描述

  • 允许多个进程同时对数据进行读操作,但是不允许读和写以及写和写操作同时发生。

问题分析

  • 一个整型变量 count 记录在对数据进行读操作的进程数量,一个互斥量 count_mutex 用于对 count 加锁,一个互斥量 data_mutex 用于对读写的数据加锁。

算法实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
typedef int semaphore;
semaphore count_mutex = 1;
semaphore data_mutex = 1;
int count = 0;

void reader() {
while(TRUE) {
down(&count_mutex);
count++;
if(count == 1) down(&data_mutex); // 第一个读者需要对数据进行加锁,防止写进程访问
up(&count_mutex);
read();
down(&count_mutex);
count--;
if(count == 0) up(&data_mutex);
up(&count_mutex);
}
}

void writer() {
while(TRUE) {
down(&data_mutex);
write();
up(&data_mutex);
}
}