数据集和数据加载器

1 torchvision.datasets 官方数据集加载

我们使用以下参数加载FashionMNIST 数据集:

  • root 是存储训练/测试数据的路径,
  • train 指定训练或测试数据集,
  • download=True如果数据不可用,则从 Internet 下载数据root。
  • transform并target_transform指定特征和标签转
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt


training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor()
)

test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor()
)

对加载的数据集进行可视化显示

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
labels_map = {
0: "T-Shirt",
1: "Trouser",
2: "Pullover",
3: "Dress",
4: "Coat",
5: "Sandal",
6: "Shirt",
7: "Sneaker",
8: "Bag",
9: "Ankle Boot",
}
figure = plt.figure(figsize=(8, 8))
cols, rows = 3, 3
for i in range(1, cols * rows + 1):
sample_idx = torch.randint(len(training_data), size=(1,)).item()
img, label = training_data[sample_idx]
figure.add_subplot(rows, cols, i)
plt.title(labels_map[label])
plt.axis("off")
plt.imshow(img.squeeze(), cmap="gray")
plt.show()

2 自定义dataset加载数据集

  • 自定义 Dataset 类必须实现三个函数:initlen__和__getitem。看看这个实现;FashionMNIST 图像存储在一个目录中img_dir,它们的标签单独存储在一个 CSV 文件中annotations_file。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import os
import pandas as pd
from torchvision.io import read_image

class CustomImageDataset(Dataset):
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
self.img_labels = pd.read_csv(annotations_file)
self.img_dir = img_dir
self.transform = transform
self.target_transform = target_transform

def __len__(self):
return len(self.img_labels)

def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
image = read_image(img_path)
label = self.img_labels.iloc[idx, 1]
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label

  • init 函数在实例化 Dataset 对象时运行一次。我们初始化包含图像、注释文件和两个转换的目录
  • len 函数返回我们数据集中的样本数。
  • getitem 函数从给定索引处的数据集中加载并返回一个样本idx。基于索引,它识别图像在磁盘上的位置,使用 将其转换为张量read_image,从 中的 csv 数据中检索相应的标签self.img_labels,调用它们的变换函数(如果适用),并返回张量图像和相应的标签一个元组。

3 使用DataLoader进行训练

  • 我们已将该数据集加载到 中,Dataloader并且可以根据需要遍历数据集。下面的每次迭代都会返回一批train_features和train_labels(batch_size=64分别包含特征和标签)。因为我们指定了shuffle=True,在我们遍历所有批次后,数据会被打乱
1
2
3
4
5
6
7
8
9
# Display image and label.
train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_labels.size()}")
img = train_features[0].squeeze()
label = train_labels[0]
plt.imshow(img, cmap="gray")
plt.show()
print(f"Label: {label}")